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ABSTRACT

Gene trees describe how parts of the species have evolved over time, and it is assumed

that gene trees have evolved along the branches of the species tree. However, some of gene

trees are often discordant with the corresponding species tree due to the complicated evolution

history of genes. To overcome this obstacle, median problems have emerged as a major tool for

synthesizing species trees by reconciling discordance in a given collection of gene trees. Given a

collection of gene trees and a cost function, the median problem seeks a tree, called median tree,

that minimizes the overall cost to the gene trees. Median tree problems are typically NP-hard,

and there is an increased interest in making such median tree problems available for large-scale

species tree construction.

In this thesis work, we first show that the gene duplication median tree problem satisfied the

weaker version of the Pareto property and propose a parameterized algorithm to solve the gene

duplication median tree problem. Second, we design two efficient methods to handle the issues

of applying the parameterized algorithm to unrooted gene trees which are sampled from the

different species. Third, we introduce the graph-theoretic formulation of the Robinson-Foulds

median tree problem and a new tree edit operation. Fourth, we propose a new metric between

two phylogenetic trees and examine the statistical properties of the metric. Finally, we propose

a new clustering criteria in a bipartite network and propose a new NP-hard problem and its

ILP formulation.
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CHAPTER 1. INTRODUCTION

Phylogenetic tree inference of increasingly larger and more credible tree estimates is con-

tinuously enriching our fundamental knowledge about the evolutionary relationships of how

evolutionary entities (e.g., molecular sequences, genomes, and species) have evolved over time.

Through these relationships, we are able to understand the general evolutionary principles of

how evolutionary entities have evolved the way they are today. While these principles are al-

ready greatly benefitting our society and our economy (e.g., in the areas of epidemiology, vaccine

development, and conservation biology) [Nik-Zainal et al. (2012); Hufbauer et al. (2003); Roux

et al. (2006); Harris et al. (2013); Forster and Renfrew (2006)], they also allow us to predict how

evolutionary entities may change in the future. Thus, phylogenetic trees can also be used as

powerful predictive tools that are not only of fundamental importance to biology [Dobzhansky

(2013)], but are also benefiting numerous applications in other research areas [Jackson (2004);

Nik-Zainal et al. (2012)].

Traditional phylogenetic tree inference approaches sample a single gene (gene family) for a

set of species and construct the evolutionary history, or gene tree, of this gene. It is assumed

that the gene tree is mimicking the evolution of the species, and, therefore, is identified with the

species tree. However, gene trees for two distinct genes may differ due to complex evolutionary

processes that affect the genomic locations differently (e.g., gene duplications, lateral transfer,

or deep coalescence) [Page (1998); Cotton and Page (2005)]. Therefore, identifying a gene tree

with its species tree can result in largely misleading phylogenetic analyses. Furthermore, a gene

might only have been sampled for a small number of species, and a small number of species in

the resulting species tree can largely limit its benefit for phylogenetic analyzes [Pamilo and Nei

(1988)].



www.manaraa.com

2

In contrast, today’s genomic data sets provide us with an unprecedented wealth of novel

evolutionary information for credible phylogenetic studies. Such data sets provide us with

thousands of genes (e.g., the human genome has about 21, 000 genes [Ezkurdia et al. (2014);

Consortium et al. (2004); Pennisi (2012)]) sampled from across the species of interest, and

make it possible to infer large-scale and credible phylogenetic species trees. However, inferring

such phylogenetic tree estimates from genomic-sized data sets is one of the most complex and

challenging problems in computational phylogenetics.

Median tree problems provide a powerful tool to synthesize large-scale species tree estimates

from collections of discordant gene trees [Bininda-Emonds (2004)]. Given a collection of gene

trees, median tree problems (also referred to as supertree problems [Bininda-Emonds (2004)])

seek a tree, called median tree, that is minimizing the overall distance to the input trees using

a problem-specific measure. Median tree problems that are typically used in practice are NP-

hard, and thus have been addressed by standard local search heuristics, which have produced

some credible estimates of species trees [Maddison and Knowles (2006); Than and Nakhleh

(2009a)]. However, such heuristics are challenged to find a globally optimal species tree in a

highly complex solution landscape whose size is double factorial in the size of the searched

tree. In addition, this landscape has typically numerous local optima that can trap heuristic

approaches [Bansal and Eulenstein (2013)].

The gene duplication problem is a median tree problem that seeks to compute a species tree

that is the median tree for a given collection of gene trees under the gene duplication score. The

gene duplication score is defined to be the minimum number of gene duplications necessary to

explain the discordance between a gene tree and a species tree. While the gene duplication score

can be computed in linear time [Zhang (1997)], the gene duplication problem is NP-hard [Ma

et al. (2000)], W [2]-hard when parameterized by the gene duplication score [Bansal and Shamir

(2011)], and hard to approximate to better than a logarithmic factor [Bansal and Shamir (2011)].

Therefore, effective local search heuristics for this problem have been proposed [Bansal and

Eulenstein (2013); Wehe et al. (2013)], carefully analyzed, and applied to compute credible

species trees [Cotton and Page (2002); Martin and Burg (2002); McGowen et al. (2008); Page

(2000)]. As a consequence exact solutions using integer linear programming [Chang et al. (2011)]
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and dynamic programming [Chang et al. (2013)] have been developed. Such exact algorithms are

coming into reach of computing smaller phylogenetic studies, and they have helped resolving an

evolutionary conjecture about an empirical data set posed in the literature [Page and Charleston

(1997)]. However, exact solutions for large-scale studies remain still out of reach.

Although heuristics for the gene duplication problem have provided promising results, the

steady increase of median tree problems has spurred the need to seek justification for any

preference. While simulation studies and empirical studies are typically used to provide such

preference, they mostly evaluate heuristic results of NP-hard median tree problems rather than

the problems themselves [Bininda-Emonds (2004)]. In contrast, showing whether median tree

problems satisfy certain theoretical properties allows for an exact evaluation [Wilkinson et al.

(2007); Steel et al. (2000)]. Furthermore, such properties can also contribute to the design of

more efficient and effective algorithms for median tree problems [Lin et al. (2012a)]. Pareto

axioms, which have their origins in social choice theory [Arrow (1952)], offer a basic approach

to study theoretical properties of median tree problems. Here, we focus on the desirable Pareto

property for clusters. This problem has been extensively studied for several median tree prob-

lems [Wilkinson et al. (2007); Lin et al. (2012a)], and, Wilkinson et al. (2007) posed the con-

jecture that the gene duplication problem is Pareto for clusters.

In Chapter 4, we show that the Wilkinson et al. (2007) conjecture does not generally hold.

Despite this negative result, we prove that a slightly modified version of the Pareto property for

clusters is satisfied for the gene duplication problem. Besides the usefulness of this property for

evolutionary studies, this property also allows us to design an exact polynomial-time algorithm

for a fixed parameterization of the gene duplication problem that can be highly beneficial in

practice. In an empirical study we demonstrate the ability of our exact algorithm to handle

large-scale instances. Using large-scale instances, we analyze the performance of DupTree [Wehe

et al. (2008)], a standard heuristic for the gene duplication problem, by comparing the heuristic

results against the exact ones computed by our new algorithm.

As the gene duplication problem, median tree problems can be much more tractable and

are better understood when their instances are restricted to gene trees whose leaf-genes are

sampled from the same set of species [Bryant (2003)]. While most median tree problems remain
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NP-hard in their restricted version, a class of such restricted problems has been effectively

addressed using a parametrized approach, called Strict Consensus Approach [Lin et al. (2012a);

Moon et al. (2016)]. Most notably, this class includes the classic gene duplication [Moon et al.

(2016)], deep coalescence [Lin et al. (2012a)], and Robinson-Foulds [Bryant (2003)] problems.

It has been demonstrated that this approach can significantly improve on the scalability of such

problems [Lin et al. (2012a); Moon et al. (2016)].

However, the applicability of the Strict Consensus Approach has been severely limited due

to its restriction to apply only to rooted gene trees that are sampled from the same set of

species, while at the same time most available gene trees are sampled from various distinct

sets of species [Bininda-Emonds (2004)] and are unrooted [Górecki and Eulenstein (2012)].

Note that most standard phylogenetic inference methods, like maximum likelihood [Felsenstein

(1981)], maximum parsimony [Fitch (1971)], or neighbor joining [Saitou and Nei (1987)], only

infer unrooted gene trees, and it is often difficult, if not impossible, to identify credible root-

ings [Boykin et al. (2010); Burleigh et al. (2011)]. For instance, outgroup rooting can result in

incorrect rootings when evolutionary events cause heterogeneity in the gene trees, and molec-

ular clock assumption or midpoint rooting can result in error when there is a molecular rate

variation throughout the tree [Holland et al. (2003); Huelsenbeck et al. (2002)].

In Chapter 5 and 6, to overcome this limitation, we devise two efficient methods that extends

the Strict Consensus Approach to handle unrestricted and unrooted median tree problems.

Using empirical and simulation studies, we demonstrate that our new methods applied to the

unrestricted and unrooted gene duplication problem improves significantly on scalability and

accuracy when compared to standard heuristic approaches for this problem.

The Robinson-Foulds (RF) distance (or also referred to as symmetric difference) [Robinson

and Foulds (1981)] is among the most widely used in comparative phylogenetics. The classic

RF median tree problem is the median tree problem for the RF distance. This problem is

NP-hard [McMorris and Steel (1993)] like most other standard median tree problems [Bininda-

Emonds et al. (2002)]. In practice, NP-hard median tree problems have been addressed using

standard local search heuristics that search the space of all candidate median trees [Maddison

and Knowles (2006); Than and Nakhleh (2009b); Bansal et al. (2010a); Chaudhary et al. (2010);
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Lin et al. (2012a)]. Given an initial starting candidate tree, such heuristics search for an optimal

candidate tree within the local neighborhood of the initial tree that is the set of all trees into

which the starting tree can be transformed by at most one tree edit operation. This procedure

constitutes a local search step. The locally optimal tree found becomes the starting tree for the

next local search step, and so on, until a local minima is found.

In Chapter 7, we introduce the first clique-based formulation of the RF median tree problem.

This graph-theoretic formulation allowed us to develop a novel clique-based heuristic for the RF

median tree problem that operates on a different type of search space than standard median tree

heuristics that are searching the space of candidate median trees. Using large-scale published

empirical data sets and simulated data, we demonstrate that our clique-based heuristic is able

to improve on the best-known RF species tree estimates for the given data sets, when initialized

with these trees. Finally, investigating how our clique-based heuristic relates to standard median

tree heuristics reveals that it can be interpreted as a local search heuristic for candidate median

trees that uses a novel tree edit distance, which we call m-rooted multiple subtrees prune and

regraft (m-rMSPR), to define the neighborhood for the local search step. We also show how

the m-rMSPR neighborhood relates to the classic local neighborhoods used by standard median

tree heuristics.

To compare phylogenetic trees, many pairwise distance measures have been proposed (e.g.,

Maximum Agreement Subtree (MAST) distance [Finden and Gordon (1985)], nearest-neighbor

interchanging (NNI) distance [Waterman and Smith (1978)], subtree pruning and regraft-

ing (SPR) distance [Allen and Steel (2001)], Robinson-Foulds distance [Robinson and Foulds

(1981)], and bipartition matching distance [Lin et al. (2012b)]). However, they each have a

variety of shortcomings, MAST distance is too stringent [Lin et al. (2012b)]; distance measures

based on edit distances under tree edit operations (i.e., NNI or SPR) are NP-Hard [Allen and

Steel (2001); DasGupta et al. (1997); Hickey et al. (2008)]; the Robinson-Foulds (RF) distance

has a vary skewed distribution [Bryant and Steel (2009); Steel and Penny (1993)], in which most

values are close to the maximum; the bipartition matching distance is restricted to unrooted

phylogenetic trees [Lin et al. (2012b)].
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In Chapter 8, we introduce a new pairwise distance measure for rooted phylogenetic trees

and show the new distance measure induces a metric on the space of trees. We also propose

how the distance measure can be computed in polynomial time and demonstrate statistical

properties using the simulated data sets.

The median tree approaches are susceptible to the collection of gene trees. While the gene

trees may agree strongly on the structure relating a large subset of the species, the remaining

few species can effectively prevent this underlying structure [Pattengale et al. (2011)]. A species

genome has multiple genes, intuitively, this information forms a bipartite network where nodes

in one partition represent species, nodes in the other represent genes, and an edge represents the

containment between a species and a gene. By finding dense subgraph in the network, closely

related spices and genes can be identified.

The highly connected subgraph algorithm has been used to identify dense components in bio-

logical networks [Hartuv et al. (2000)]. An undirected graph with n vertices is highly connected

if it can only be disconnected by removing more than n
2 of its edges. While this approach has

been utilized to a normal graph [Sharan et al. (2007)], it cannot be applied to the large class of

biological networks that is represented by using bipartite graphs. This is due to the fact that

highly connected subgraphs do not exist in bipartite graphs.

In Chapter 9, we overcome this stringent limitation by proposing a natural adaptation of the

definition for highly connected subgraphs to bipartite graphs. A bipartite graph G = (U, V,E)

is highly bi-connected if more than 1
2 min(|U |, |V |) of its edges are required to disconnect it.

To identify useful highly connected subgraphs in bipartite biological networks, we analyze the

highly bi-connected (HBC) problem that given a bipartite graph and a natural number k, decides

whether this graph contains a highly bi-connected subgraph with k vertices. We show that this

problem, like its related problem for identifying highly connected subgraphs [Hüffner et al.

(2015)], is NP-Hard. Consequently, to address the HBC problem, we describe an integer linear

programming (ILP) formulation and a heuristic algorithm that can handle large-scale instances.

We also demonstrate the performance of our heuristic through a comparative study using exact

ILP solutions and an applicability study for to protein function annotation.
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CHAPTER 2. REVIEW OF THE LITERATURE

The pioneering work of Goodman et al. (1979) introduced the gene duplication problem

under the assumption that all trees involved are rooted and full binary. This problem is a

median tree problem under the gene duplication score that is defined for a gene tree and a

species tree. The leaves of the species tree are uniquely labeled by species and we identify the

leaves with their labels. The leaves of the gene tree are mapped to the leaves of the species

tree through a one-to-one function called leaf-labeling. While such a function always exists, it is

assumed that this function maps the genes to the species from which they were sampled. The

leaf-labeling can be extended to a function called least common ancestor (LCA) mapping. This

mapping relates each gene in the gene tree to the most recent species in the species tree that

could have contained this gene. A gene in the gene tree is a called a gene duplication if it has

a child with the same LCA mapping. The gene duplication score between a gene tree and a

species tree for a given leaf labeling is the number of gene duplications.

A basic approach for evaluating median tree problems are their Pareto properties [Arrow

(1952); Wilkinson et al. (2007); Lin et al. (2012a)]. A median tree problem is Pareto when the

elementary evolutionary information that is commonly described by every input tree of each of

its problem instances is also described by the corresponding median tree. Pareto properties are

distinguished by the type of elementary information that is used, such as triplets, nestings, or

clusters [Wilkinson et al. (2007)]. In this thesis, we are interested in the Pareto property for

clusters. A cluster for a vertex in a tree is the set of all labels of the leaves of the subtree rooted

at this vertex. The cluster representation of a tree is the set containing a cluster for each of the

vertices in the tree. A tree and its cluster representation are equivalent representations of each

other [Semple and Steel (2003a)]. The use of clusters as elementary evolutionary information

that is common to the input trees requires that problem instances consist only of trees with
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the same taxon set, which are called consensus instances. A median tree problem is Pareto

for clusters if the consensus clusters for each of its consensus instances is contained in every

corresponding solution, i.e. a median tree. While the Pareto for clusters property is restricted

to make a statement only about the consensus instances, it still provides valuable information

about median tree problems [Wilkinson et al. (2007); Lin et al. (2012a)]. This holds in particular

true for applications of medium tree problems that only use consensus instances, such as the

maximum parsimony method that typically produces several parsimony trees over the same

taxon set which are represented by a median tree for evolutionary studies [Hedges et al. (1992)].

While it is known for various median tree problems whether they are Pareto for clusters, this

is still unknown for the classical gene duplication problem.

The Strict Consensus Approach has been introduced in [Lin et al. (2012a)], which is ap-

plicable to a class of restricted median tree problems (i.e., problems where the input trees are

restricted to a same leaf set) that satisfy the Pareto (for clusters) property [Wilkinson et al.

(2007)] and a substructure property [Lin et al. (2012a)]. The Pareto property has its roots

in social choice theory [Arrow (1952)], and various restricted median tree problems have been

identified to satisfy this property [Wilkinson et al. (2007)].

The set of clusters common to a collection T of restricted trees define the strict consensus

clusters of T [Semple and Steel (2003b)]. Strict consensus clusters form a rooted tree under

the transitive reduction of the set-containment relationship between clusters, called the strict

consensus tree of T [Semple and Steel (2003b)]. When a collection of restricted trees that are

rooted have clusters in common (i.e., the strict consensus clusters of these trees), then one

would expect that an optimal species tree for these trees under any “reasonable” median tree

problem would also contain these clusters. The Pareto property is formalizing this idea.

For a restricted median tree problem, when the strict consensus clusters of each instance

are contained in the every corresponding solution, then this problem satisfies the Pareto prop-

erty [Wilkinson et al. (2007)]. Several restricted median tree problems are known to satisfy the

Pareto property, including the deep coalescence problem [Lin et al. (2012a)] and the Robinson-

Foulds problem [Bryant (2003)]. The Pareto property is not only valuable to practitioners for

deciding which median tree problem might be most suitable for their analyses, but also, can lead
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to formal characterizations that reduce the complexity of such problems [Lin et al. (2012a)].

Fig. 2.1 depicts an example, where the strict consensus tree of the input trees T1, . . . , Tk is

the tree G, which includes the multifurcation consisting of the parent cluster Cp and its child

clusters C1, . . . , Cl. The optimal species tree, the tree S in the figure, refines this multifurcation

based on the objective function of the applied median tree problem.

Figure 2.1: An illustration of the Strict Consensus Approach.
P = {T1, · · · , Tk}: input trees, G: the strict consensus tree of the input trees.
S: the optimal species tree (a refinement of G).
Cp, C1, · · · , Cl: the common clusters of the input trees.

The Strict Consensus Approach refines all of the multifurcations of the strict consensus tree

to reach an optimal solution. Each multifurcation is refined by solving a sub-instance of the

original problem instance. Given a multifurcation, expressed as a parent and its child clusters,

the corresponding sub-instance is computed by trimming the trees of the original instance to

contain only clusters that are on a path between the parent cluster and its child clusters. Fig. 2.1

illustrates such a trimming for the parent cluster Cp and its child clusters C1, . . . , Cl, where the

resulting sub-instance is depicted as a collection of subtrees of the input trees T1, . . . , Tk. Lastly,

the refinements for each multifurcation of the strict consensus tree have to result in a solution

of the corresponding restricted median tree problem, which is warranted if this problem is

satisfying the substructure property.

The pioneering work from Robinson and Foulds [Robinson and Foulds (1981)] has introduced

the widely-used Robinson-Foulds (RF) distance (which is also called symmetric difference) for

two trees. For the purpose of this work the trees involved are rooted and full binary. The RF

distance between two trees over the same taxon set is the normalized count of the cardinality

between the symmetric difference of the cluster representations of these trees. A cluster for a
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vertex in a tree is the set of all labels of the leaves of the subtree rooted at this vertex. The

cluster representation of a tree is the set containing a cluster for each of the vertices in the tree.

A tree and its cluster representation are equivalent representations of each other [Semple and

Steel (2003b)].

To evaluate the overall RF distance of a candidate median tree to its input trees, it might

be necessary to compute this distance between two trees where the taxa set of one tree (i.e., an

input tree) is a proper subset of the taxa set of the other tree (i.e., the candidate median tree).

While the RF distance is not defined for such trees, this is a common problem that occurs for

various other distances for median tree problems. A standard approach to address this problem

is using the minus method [Wilkinson et al. (2007)] that restricts the larger of the two trees

to only the taxa set of the smaller tree before computing the RF distance. Computing the RF

distance between two trees over the same taxa has only a linear time complexity in the number

of nodes in the trees involved [Day (1985)]. A randomized algorithm that runs in sublinear

time has been shown to approximate the RF distance with a bounded error [Pattengale et al.

(2007)].

Clique-based formulations have been proposed and studied for three median tree problems,

which are the deep coalescence, gene duplication, and gene duplication-loss problems. However,

these clique-based formulations have not been used to develop heuristics for the corresponding

problems applicable to large-scale instances.

Than and Nakhleh [Than and Nakhleh (2009b)] showed that the deep coalescence problem

for n species could be solved by exploring minimum weight (n − 1)-cliques (i.e., cliques with

n− 1 vertices) in the vertex-weighted compatibility graph of all possible clusters over n species.

A cluster over a set of n species is any non-empty subset of this set. The clusters with more

than one species represent the vertices of the compatibility graph, and an edge is drawn between

two vertices if they are compatible. Two clusters are compatible if and only if they are disjoint

or one cluster contains the other one. It is known that a species tree over n taxa exists if n− 1

clusters with more than one species are pairwise compatible [Semple and Steel (2003b)], and

therefore form a clique in the compatibility graph. As a result, the deep coalescence problem

can be solved by finding a minimum weight (n − 1)-clique in the compatibility graph where
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weights are assigned to the vertices based on their contribution of deep coalescence events to

reconcile the input gene trees. The clique-based formulation of the deep coalescence problem

was used to describe an ILP formulation of this problem, which then allowed to solve small

instances of up to eight species exactly.

Later, Bayzid et al. (2013) showed that the gene duplication and gene duplication-loss

problem were also solvable by using a clique-based approach that is similar to the one introduced

by Than and Nakleh, using a different type of compatibility graph and weighting functions.

Due to the different properties of the weighting functions, the gene duplication problem and

the duplication-loss problem were solved by finding a maximum weight (n − 1) clique and a

minimum weight (n− 1) clique in the compatibility graph respectively.

The original work from Lin et al. (2012b) has proposed the (bipartition) matching distance.

Similar to the clusters in a rooted tree, every internal edge e in an unrooted tree T defines

a nontrivial bipartition σe on the leaves, and the tree T is uniquely represented by the set of

bipartitions Σ(T ) = {σe|e ∈ E(T )} where E(T ) is the set of internal edges in T . A bipartition

can be represented by the binary vector, i.e., if σ = (1, · · · , k|k+1, · · ·n), then the corresponding

binary representation is [1, · · · , 1, 0, · · · , 0] where the number of 1’s is equal to k. Given two

trees, T1 and T2 on the same set of leaves, a complete weighted bipartite graph G(X,Y,E) with

X = Σ(T1) and Y = Σ(T2) is denoted by B(T1, T2). The weight of each edge e = {u, v} in

B(T1, T2) is set toW (u, v) = min{HD(Vu, Vv), HD(Vu, Vv)} where Vu and Vv are the two binary

vector representations of the bipartition u and v, V is the complement vector representation of

V , and HD is the Hamming distance. The bipartition matching distance BM(T1, T2) between

trees T1 and T2 is the weight of the minimum-weight perfect matching in B(T1, T2) with the

weighting schemeW . The bipartition matching distance can be computed between rooted trees

by suppressing the roots of the trees, however, this becomes ignoring the imperative feature of

rooted trees.

A key idea of graph clustering is to identify densely connected subgraphs as clusters that

have many interactions within themselves and few interactions outside of themselves in the

graph [Hüffner et al. (2014)]. A highly connected subgraph is defined as a subgraph with n

vertices such that more than n
2 of its edges must be removed in order to disconnect the subgraph.
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The concept of a highly connected graph is very similar to that of a quasi-clique (i.e., a graph

where every vertex has a degree at least n−12 [Hüffner et al. (2014)]). Hartuv and Shamir [Hartuv

and Shamir (2000)] proved that the HCS algorithm, which is based on the n
2 connectivity

requirement, produces clusters with good homogeneity and separation properties [Pržulj et al.

(2004)]. However, the concept of highly connected subgraphs is not applicable to bipartite

graphs, since they do not contain such subgraphs.
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CHAPTER 3. PRELIMINARIES

A graph G is an ordered pair (V,E) consisting of a non-empty set V of nodes and a set E

of edges. We denote the set of nodes and edges of G by V (G) and E(G), respectively.

If e = {x, y} is an edge of a graph G, then e is said to be incident with x and y. Two nodes

x, y of G are adjacent, or neighbor, if {x, y} is an edge of G. The set of neighbors of a node x

in G is denoted by NG(x), or briefly N(x). More generally for U ⊆ V , the neighbors in V \ U

of nodes in U are called neighbors of U ; their set is denoted by N(U).

If x is a node of a graph G, then the degree of x in G is the number of edges in G that are

incident with x. The degree of a node x is denoted by dG(x), or briefly d(x). The degree of x

in U ⊆ V is the number of nodes in U that are adjacent to x, denoted by d(x, U). The number

δ(G) := min{d(x)|x ∈ V } is the minimum degree of G.

A path is a sequence of edges which connect a sequence of nodes that are all distinct from one

another. The path length plG(x, y) of two nodes x, y is the number of edges in a shortest path

from x to y in G; if no such path exists, we set plG(x, y) :=∞. If |V | > 1 and G′ = (V,E \ F )

is connected for every set F ⊆ E of fewer than l edges, then G is called l-edge-connected. The

greatest integer l such that G is the l-edge-connected is edge-connectivity λ(G) of G. For every

non-trivial graph G, we have δ(G) ≥ λ(G).

Let G = (V,E) and G′ = (V ′, E′) be graphs. If V ′ ⊆ V , E′ ⊆ E, and G′ contains all the

edges {x, y} ∈ E with x, y ∈ V ′, then G′ is an induced subgraph of G and denoted G′ := G[V ′].

A graph G = (X ∪ Y,E) is called bipartite if V = X ∪ Y admits a partition into two disjoint

subsets X and Y such that every edge connects a node in X to one in Y .

A unrooted tree T is an acyclic, connected, and undirected graph. The degree one nodes

are called leaves and the remaining nodes are called internal nodes. The set of leaves in T is

denoted by L(T ), and the set of all internal nodes in T is denoted by Vint(T ). A unrooted
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tree T is binary if every node has degree one or three. A rooted tree T is defined similar to an

unrooted tree except that it has one distinguished node that leads a parent-child relationship

on the nodes, called the root of T , denoted by r(T ). A rooted tree T is binary if every node

has degree one, two or three.

Let X ⊆ L(T ), we write X to denote the leaf complement of X where X = L(T ) \ X.

The subtree of T induced by X, denoted by T (X), is the minimal connected subtree of T that

contains X. The restricted subtree of T induced by X, denoted by T |X is the tree obtained

from T (X) by suppressing all nodes of degree two with the exception of the root for a rooted

tree.

Let T be an unrooted tree. A split is an unordered bipartition of sets. The split in which

parts are A and B is denoted by A|B. T displays a split A|B if there is an edge in T whose

removal gives trees T1 and T2 such that A ⊆ L(T1) and B ⊆ L(T2). A split A|B is full if

A ∪ B = L(T ). The set of all full splits displayed by T is denoted Σ(T ). Let X ⊆ L(T ). The

restriction of a split σ∩X is defined as A∩X|B∩X, Σ(T |X) := {x∩X : ∀σ ∈ Σ(T )∧A∩X 6=

∅ 6= B ∩X}. A split A|B is nontrivial if each of A and B has at least two elements; otherwise

it is trivial.

Let T be a rooted tree. We define ≤T to be the partial order on V (T ), where x ≤T y if y is a

node on the path between r(T ) and x. If x ≤T y, we call x a descendant of y, and y an ancestor

of x. We also define x <T y if x ≤T y and x 6= y, in this case we call x a proper descendant of y.

If {x, y} ∈ E(T ) and x ≤T y, then we call y the parent of x, denoted by PaT (x), and x a child

of y. The set of all children of y is denoted by ChT (y). Let T be a rooted tree. The subtree of T

rooted at x ∈ V (T ), denoted by T (x), is the restricted subtree induced by {y ∈ V (T ) : y ≤T x}.

The cluster of x is defined by CT (x) := L(T (x)), and the set of all clusters of T is defined by

H(T ) =
⋃
y∈V (T ) CT (y). X ∈ H(T ) is called a trivial cluster if X = L(T ) or |X| = 1, it is called

non-trivial otherwise. The least common ancestor (LCA) of X ⊆ L(T ), denoted by lcaT (X), is

the unique smallest upper bound of X under ≤T . Let T ′ be a rooted tree where L(T ′) ⊆ L(T ),

we define LCA mapping M : V (T ′) → V (T ) byMT ′,T (x) := lcaT (CT ′(x)), or brieflyM when

it is clear.
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Let T and T ′ be trees with the same leaves. We define ≤ to be the partial order on trees

where T ≤ T ′ if Σ(T ) ⊆ Σ(T ′) for unrooted trees and H(T ) ⊆ H(T ′) for rooted trees. We say

T ′ refines T if T ≤ T ′. Let L(t) ⊆ L(T ). A tree T displays tree t if t ≤ T |L(t).

Let πi = (Ai, Bi) and πj = (Aj , Bj) be unordered pairs. We say that πi contains πj if

Aj ∪ Bj ⊆ Ai or Aj ∪ Bj ⊆ Bi and that πi and πj are disjoint if (Ai ∪ Bi) ∩ (Aj ∪ Bj) = ∅.

We also say that pj is includes pi if Ai ∪ Bi * Aj , Ai ∪ Bi * Bj , and (Ai ∪ Bi) ( (Aj ∪ Bj).

Let T be a rooted binary tree. An unordered pair π = (A,B) is called a rooted split on L(T ) if

A∪B ⊆ L(T ). An internal node determines a rooted split. A rooted split of a node v ∈ Vint(T ),

denoted by π(v), is the unordered pair (CT (l), CT (r)) where l and r are two children of v. Let

Γ(T ) be a set of rooted splits of the internal nodes in T , then Γ(T ) =
⋃
v∈Vint(T )

π(v).

A profile is a tuple of trees. Let P = (t1, . . . , tk) be a profile, then its leaves is L(P ) :=⋃k
i L(ti), and its nodes cardinality is |P | :=

∑k
i=1 |V (ti)|. A tree T is a supertree for P if

L(T ) = L(P ).

A tree T has the non-contradiction property if T |L(ti) ≤ ti (∀i ∈ {1, · · · , k}). A tree T is

called guidance tree for P if T is a supertree for P and T has the non-contradiction property.

A profile is called rooted (unrooted) if all trees in the profile are rooted (unrooted).

For each tree t in P we define its span 〈t〉, to be the set of all trees on L(P ) displaying

t. A restricted span 〈t〉G is the set of all trees on L(P ) that display t and refine G. The span

(restricted span) of P , denoted by 〈P 〉 (〈P 〉G), is the set of all profiles Q = (T1, . . . , Tk) where

Ti ∈ 〈ti〉 (Ti ∈ 〈ti〉G), ∀i ∈ {1, · · · , k}. The strict consensus splits (clusters) of Q are the splits

(clusters) common to the trees in Q, and the strict consensus tree of Q, denoted by SC(Q), is

the tree that is defined exactly by these common splits (clusters).
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CHAPTER 4. STRICT CONSENSUS APPROACH

We show that the gene duplication problem is not Pareto for clusters by counterexample.

However, we introduce a slightly weaker version of the Pareto for clusters property, which we

call weak Pareto for clusters that, as we prove, is satisfied by the gene duplication problem.

A median tree problem is weak Pareto for clusters if the consensus clusters for each of its

instances over the same taxon set are contained in at least one corresponding solution (rather

than all solutions). In contrast to the standard Pareto property, the weak Pareto property

allows to give a preference to non-unique solutions of median tree problems that contain the

strict consensus clusters. Furthermore, using the weak Pareto property we devise an efficient

fixed parameterized algorithm (Strict Consensus Approach) for the gene duplication problem

when reduced to consensus instances, where the parameter is the maximum number of children

of the strict consensus tree of the input trees. Note that this reduced variant of the gene

duplication problem is still NP-hard [Zhang (1997)].

In an empirical study we demonstrate that our exact algorithm can compute solutions

for large-scale instances where standard heuristics, implemented in DupTree, fail to terminate

within reasonable time. Our exact parameterized algorithm allows, for the first time, to analyze

the effectiveness and efficiency of DupTree on large-scale instances. We provide such an analysis

using a comparative simulated study.

4.1 Pareto Properties of the Gene Duplication Problem

Let f : TX × TX → R be a score function where X is a leaf set and TX is the set of all trees

over X. A median tree problem based on f is defined as follows.
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Definition 4.1.1 (Median Tree Problem).

Instance: A rooted profile P = {t1, · · · , tn} such that L(ti) ⊆ L(P ).

Find: The set of all trees that have the minimum aggregated score with respect to f .

Formally, argminS∈TL(P )

∑n
i=1 f

(
Ti, S|L(ti)

)
.

If L(ti) = L(P ) (∀i ∈ {1, · · · , n}), then a median tree problem is also called a consensus tree

problem. Throughout this chapter, we focus on a consensus tree problem and use a notation T

instead of t, in general, as denoting a tree such that L(T ) = L(P ).

Definition 4.1.2 (Pareto for Clusters). We say that a consensus tree problem satisfies Pareto

for clusters [Lin et al. (2012a)] if for all profiles P = (T1, . . . , Tn) and for all solutions S of P ,

we have
⋂n
i=1H(Ti) ⊆ H(S). In addition, we say that a consensus tree problem satisfies weak

Pareto for clusters if for all instances P = (T1, . . . , Tn), there exists solution(s) S of P such

that
⋂n
i=1H(Ti) ⊆ H(S).

Definition 4.1.3 (Duplication and Duplication Score). Let T be a gene tree and S be a species

tree over the same leaf set, v ∈ V (T ), and M : V (T ) → V (S) be a LCA mapping. We say

that v is a gene duplication if M(v) ∈ {M(c) : c ∈ ChT (v)}. The gene duplication score

from T to S, denoted GD(T, S), is the cardinality of the set {v ∈ V (T ) : v is a duplication}.

See example Figure 4.1. Further, if P = (T1, . . . , Tn) is a profile of gene trees, then we define

GD(P, S) =
∑n

i=1GD(Ti, S).

Figure 4.1: The LCA mapping from T to S is shown by dashed arrows. v1 has the same LCA mapping
with its children v2 and v3. v1 is the only duplication in V (T ), thus GD(T, S) = 1.

Problem 4.1.1 (Gene Duplication Problem). We define the gene duplication problem to be

the consensus tree problem based on the gene duplication score function.
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Theorem 4.1.1. The gene duplication problem is not Pareto for clusters.

Proof. Consider the profile of two gene trees P = (T1, T2) and a candidate species tree S as

shown in Figure. 4.2. We will show that S is a solution for P . We observe that GD(T1, T2) =

GD(T2, T1) = 3, while GD(T1, S) = GD(T2, S) = 1. Therefore, neither T1 nor T2 is a solution.

Since the gene duplication score from a tree to a different tree must be greater than 0, we

know that S achieves the minimum score of GD(P, S) = 2. However, we observe that the two

consensus clusters of P , {1, 2} and {5, 6}, are not contained in S.

Figure 4.2: A counter example showing that the gene duplication problem is not Pareto for clusters
(Theorem 4.1.1). The species tree S is a solution for the input profile (T1, T2) having a
total gene duplication score of 2, but it lacks the consensus clusters {1, 2} and {5, 6}.

Corollary 4.1.1. Let X,Y be disjoint non-empty leaf sets. If T be a tree over X ∪ Y and

T ′ = T |X, then lcaT (A) 6= lcaT (B) ⇐⇒ lcaT ′(A) 6= lcaT ′(B) (∀ A,B s.t. ∅ ⊂ A,B ⊆ X).

Theorem 4.1.2. The gene duplication problem is weak Pareto for clusters.

Proof. Given a profile P = (T1, . . . , Tn), let S be a solution for P , and a cluster X ⊆ L(P )

where X ∈
⋂n
i=1H(Ti). If X ∈ H(S), then since X is arbitrary we have P as a witness instance

that is weak Pareto for clusters. Otherwise, we have X /∈ H(S). In this case the proof proceeds

by directly transforming S into a new tree R that contains X by not increasing the total number

of gene duplications.

Let v = lcaS(X). Since X /∈ H(S), S(v) must contain some leaves other than X. Therefore,

let Y = L(S(v))\X. We construct a new tree R from S by replacing the children of v by S|X and

S|Y . R clearly contains X because L(S|X) = X. We now show that GD(T,R) ≤ GD(T, S)

for every T ∈ P . However, we will show a stronger result where for all T ∈ P and for all
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edges {c, p} ∈ E(T ), we have MT,S(c) 6= MT,S(p) ⇒ MT,R(c) 6= MT,R(p). Let T ∈ P and

u = lcaT (X). Take any edge {c, p} in T , and suppose MT,S(c) 6= MT,S(p), we show that

MT,R(c) 6=MT,R(p). We consider different cases as follows:

1. p ≤ u: Let A = L(T (c)) and B = L(T (p)), then we know A ⊂ B ⊆ X because u =

lcaT (X). Since MT,S(c) 6= MT,S(p), by definition we have lcaS(A) 6= lcaS(B). Let

G = S(v) and G′ = G|X, since S(v) is a subtree of S we have lcaG(A) 6= lcaG(B). Now

we apply Corollary 4.1.1 and obtain lcaG′(A) 6= lcaG′(B). Since G′ is a subtree of R we

have lcaR(A) 6= lcaR(B), henceMT,R(c) 6=MT,R(p) as required.

2. u ≤ c: Then v = lcaS(X) ≤ MT,S(c) because u = lcaT (X). Since S and R only differs

by the subtree S(v), we know thatMT,S(c) =MT,R(c) andMT,S(p) =MT,R(p). Hence

MT,R(c) 6=MT,R(p).

3. Otherwise (c � u and u � p)

(a) L(T (c)) ⊆ Y : Let A = L(T (c)) and B = L(T (p)). If L(T (p)) ⊆ Y then A ⊂ B ⊆ Y ,

similar to case 1, we apply Corollary 4.1.1 and obtain lcaR(A) 6= lcaR(B). Otherwise,

L(S(v)) = X ∪ Y , we know thatMT,R(c) ≤ v butMT,R(p) � v. In both cases, we

conclude thatMT,R(c) 6=MT,R(p) as required.

(b) L(T (c)) * Y : Then MT,S(c) must not be part of S(v) since L(S(v)) = X ∪ Y .

Therefore, similar to case 2, we haveMT,S(c) =MT,R(c) andMT,S(p) =MT,R(p),

henceMT,R(c) 6=MT,R(p).

We introduce Algorithm 1 that converts a given solution that is not Pareto for clusters to

the one that is.

Proposition 4.1.1. Algorithm 1 is correct and runs in O(k2), where k = |L(S)|.

Proof. The correctness follows directly from Theorem 4.1.2. For the runtime, the while loop

performs inO(k) time, since |X| ≤ |L(S)|. The time required by the loop body is asymptotically



www.manaraa.com

20

Algorithm 1 Pareto Solution(P , S)

Input: A profile P = (T1, . . . , Tn) and a species tree S such that
⋂n
i=1H(Ti) * H(S).

Output: A species tree R such that
⋂n
i=1H(Ti) ⊆ H(R).

R = S, X =
⋂n
i=1H(Ti) \ H(R)

while |X| > 0 do
X ∈X where |X| is minimum
v = lcaR(X), Y = L(R(v)) \X
Replace the children of v by R|X and R|Y
X =

⋂n
i=1H(Ti) \ H(R)

end while
return R

bound from above by the runtime of the set minus operation, which is O(k). This results in a

runtime of O(k2) as desired.

4.2 Strict Consensus Approach

Definition 4.2.1 (Cut on trees). Let H and T be two trees over the same leaf set such that T

refines H. Given an internal node h in H, a cut on T via H and h, denoted CutH,h(T ), is the

minimal connected subtree of T that contains {MH,T (c) : c ∈ ChH(h)}, and we rename each

leaf x by L(T (x)). We further extend this to a profile of trees P = (T1, . . . , Tn) by CutH,h(P ) ,

(CutH,h(T1), · · · , CutH,h(Tn)).

Theorem 4.2.1. Let P = (T1, · · · , Tn) be a profile of the gene duplication problem, H be the

strict consensus tree of P , and h be an internal node in V (H). If S is a solution for the profile

P such that S refines H, then CutH,h(S) is a solution for the instance CutH,h(P ).

Proof. Let Sh = CutH,h(S) and Ph = CutH,h(P ) = (CutH,h(T1), · · · , CutH,h(Tn)). For the

purpose of a contradiction we assume that Sh is not a solution for Ph, and Rh is a new solution

for Ph. This implies that GD(Ph, Sh) > GD(Ph, Rh). We modify S by substituting a subtree

Sh with Rh. Let the resulting new tree be R. Since GD(Ph, Sh) > GD(Ph, Rh), we know that

GD(P, S) > GD(P,R). This is a contradiction to that S is a solution for P .

We propose Algorithm 2 that solves the gene duplication problem by dividing a given in-

stance into an equivalent set of its subinstances. Then, each of these subinstances is solved



www.manaraa.com

21

by another algorithm, called GD-SOLVER, which is provided as an additional input of Algo-

rithm 2. For the GD-SOLVER we are utilizing the Chang et al. algorithm [Chang et al. (2013)]

that is currently one of the most efficient exact solutions for the gene duplication problem.

Algorithm 2 Strict Consensus Approach Solution(P )

Input: A profile P = (T1, . . . , Tn) and GD − SOLV ER.
Output: A candidate solution for P .
H = SC(P )

for all internal node h of H do
Ih = CutH,h(P )

Sh = GD − SOLV ER(Ph)

Refine children of h by the Sh
end for
return H

Theorem 4.2.2. The time complexity of Algorithm 2 is O(3rnmr/b) for an instance of input

gene trees that have an overall number of n taxa, a strict consensus tree whose maximum out-

degree is r, and m rooted splits. The parameter b refers to the size of the bit-vector that is used

by the algorithm for encoding the rooted splits.

Proof. Algorithm 2 executes the Chang et al. algorithm O(n) times, where each instance has

an overall number of r taxa and O(m) unique rooted splits. The runtime of the Chang et al.

algorithm for each of these instances is O(3rmr/b) [Chang et al. (2013)]. Consequently, the

time complexity of Algorithm 2 is O(3rnmr/b).

In practice, Algorithm 2 is limited by the maximum out-degree of the strict consensus tree

of the input trees H, and the GD-SOLVER that is utilized. The out-degree of an internal node

h of the strict consensus tree H of the trees in the original problem instance is equivalent to the

number of taxa of the subinstance Ph = CutH,h(P ), which is an input for the GD-SOLVER.

Since the gene duplication problem is NP-hard, exact algorithms that are used as GD-SOLVER

can only compute smaller instances with up to kmax taxa in reasonable time (e.g., kmax = 22

as shown by Chang et al. (2013)). Consequently, Algorithm 2 can solve the gene duplication

problem optimally in reasonable time, if each of the subproblems that it solves has at most

kmax taxa. However, subinstances with more than kmax taxa can be effectively addressed
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by using standard heuristics for the gene duplication problem, such as DupTree [Wehe et al.

(2008)]. Utilizing heuristics to solve subinstances makes Algorithm 2 a heuristic too. However,

Algorithm 2 greatly extends on the input sizes that can typically be handled by the heuristic that

is used as GD-SOLVER. For instance, Figure 4.3 depicts a strict consensus tree that corresponds

to subproblems that should be either addressed using an exact or heuristic GD-SOLVER. Now,

we call the described method as the Strict Consensus Approach.

Figure 4.3: d: out degree, the: threshold for exact algorithm, thh: threshold for heuristic algorithm.
Different GD-SOLVERs are served by out degree of internal nodes (the number of taxa)
in the substructure approach.

Our new software Gene Duplication Solver by Strict Consensus Approach (GDSS) imple-

ments Algorithm 2. GDSS adapts the exact Chang et al. algorithm and the classical local search

heuristic DupTree as external GD-solvers. The inputs for GDSS is a list of gene trees and kmax.

The output is the species tree that is found by utilizing the Strict Consensus Approach. GDSS

is freely available at http://genome.cs.iastate.edu/ComBio/software.htm.

4.3 Experiments

We demonstrate that our parameterized algorithm can handle large-scale instances of the

gene duplication problem using empirical data. A standard approach to compute such instances

is to compute heuristic estimates using the program DupTree, which has been used to perform

several compelling large-scale phylogenetic studies [Cotton and Page (2002); Martin and Burg

(2002); McGowen et al. (2008); Page (2000)]. Now, for the first time, we are able to analyse the

accuracy of DupTree on large-scale instances. Section 4.3.1 describes the performance study of

our algorithm, and Section 4.3.2 analyzes the accuracy of DupTree.
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4.3.1 Empirical study

Methods for inferring phylogenetic trees from molecular data, such as maximum parsimony

and maximum likelihood, often produce a collection of several phylogenetic trees over the same

taxon set for the given data [Stamatakis (2014)]. The phylogenetic information that is common

in these trees is typically described by some type of consensus tree, such as the strict consensus

tree. For a meaningful study it is generally expected that this consensus tree displays some

structure, rather than being a star tree. This motivates our algorithm that refines the strict

consensus tree by solving the gene duplication problem, which is fixed parameterized by the

maximum degree of this consensus tree. However, it is still necessary to validate whether the

consensus trees displayed by large-scale empirical data are of a manageable structure that is

in practice solvable by our approach. Hence, we conducted a large-scale study using empirical

data that measures the distribution of the node degrees in strict consensus trees.

For our study we use the primary alignment of 1, 400 5S Ribosomal RNA bacterial sequences

from the Comparative RNA Web Site Project [Cannone et al. (2002)]. Their taxonomic cover-

age of Phyla is Acidobacteria, Actinobacteria, Aquificae, Bacteroidetes, Chlamydiae, Chlorobi,

Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes,

Proteobacteria, and Verrucomicrobia. We inferred 40, 000 gene trees from this alignment us-

ing the maximum parsimony approach that is implemented in the program Parsimonator [Sta-

matakis (2014)]. Our objective is to represent these trees through their gene duplication median

tree, i.e., the solution of the corresponding instance of the gene duplication problem. A stan-

dard approach to handle large-scale instances of this size is to utilize the heuristic DupTree for

estimating a gene duplication median tree. However, the runtimes of DupTree are prohibitive

for our instance with gene trees that have 1, 400 leaves. The runtimes of DupTree are reported

with 1, 000 leaves and 2, 000 leaves to be 3.3 hours and up to 3 days respectively [Wehe et al.

(2008)]. Furthermore, DupTree is a heuristic and thus lacks any type of performance guarantee

about the trees that it estimates. Investigating into the degree distribution of strict consensus

trees for large-scale empirical studies will evaluate to what extent our subproblem approach is

applicable for such studies where heuristics may fail to produce estimates in reasonable time.
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Dataset and Experimental Setup. We executed the program Parsimonator 40, 000 times

and gathered the best 400 gene trees in terms of their parsimony score. We computed 1, 000

strict consensus trees using the following general boot strap technique; that is, 1000 times we

sampled 40 gene trees randomly from the best 400 gene trees. For each sample we constructed

a strict consensus tree from the chosen 40 gene trees. Figure 4.4 depicts the resulting degree

distribution of the nodes of these strict consensus trees.

Figure 4.4: Distribution and the cumulative distribution of the node out degrees from 1, 000 strict
consensus trees.

Results. Figure 4.4 shows that 95% of the internal nodes have an out degree that is less

than 20. The exact algorithm from Chang et al. (2013) solves the problem of 18 leaves within 10

minutes. Consequently, using our scalable approach, most of the subproblems resulting from the

gene tree instances with 1, 400 leaves can be solved optimally within reasonable time. However,

all strict consensus trees from our simulation have at least one internal node whose out degree

is around 800, and therefore, corresponding subproblems require a heuristic approach.

4.3.2 Simulated study

We analyze the performance of the heuristic DupTree for gene duplication problem using

two types of simulated experiments. Experiment 1 uses small sized instances for which we do

not apply our substructure approach. Experiment 2 uses large-scale ones that we solve using

our subproblem approach. For both experiments to generate the instances we computed binary

tree T randomly using the following method: i) given k leaves, ii) insert k leaves to a queue Q
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and T , iii) randomly pops two nodes x, y from Q, iv) insert a new node z to Q and T such that

CHT (z) = {x, y}. v) repeat the process iii)-iv) until |Q| = 1.

Experiment 1. Analyzing DupTree’s accuracy, Chang et al. (2013) reported that DupTree

found optimal scores in only 8% of 1, 000 runs using problem instances with 16 taxa. For our

purposes we performed a more detailed analysis that provides the probabilities for DupTree to

compute the optimal score under various conditions.

Dataset and Experiment Setup. For each k ∈ {5, 6, 7, 8, 9}, we generated 100 random

instances, each consisting of 40 full binary gene trees with k leaves. For each of these instances

we run DupTree t times for each t ∈ {1, 2, 3, . . . , 20}. Above runs were performed 50 times.

Figure 4.5: Probability of finding an optimal score by repeated DupTree runs. Each line in the chart
stands for a different number of leaves.

Results. Figure 4.5 shows that DupTree identifies the optimal score in more than 90% of

the runs when the trial number is larger than 4 for all numbers of leaves. When the number

of leaves is 5 and the number of trials is larger than 2 DupTree identifies the optimal score in

more than 99% the runs. For other numbers of leaves, the probability that DupTree reports the

optimal one increases rapidly when the number of trials increase from 1 to 3. Increasing the

number of trials further does not increase the probability that DupTree reports correct results.

Experiment 2. Using our subproblem approach we measure the error rate of estimated

scores by DupTree and the running time ratio between the exact algorithm and DupTree for

large-scale instances.
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Figure 4.6: Error rates of optimal score by using DupTree under our subproblem approach. The left
chart shows the result for templates of depth d = 3 and the right chart depicts this for
depth d = 4. Each chart is divided into panels by out degree b ∈ {6, 7, 8, 9}. The number
of leaves is bd.

Dataset and Experimental Setup. We generated random instances of trees that conform

to a given strict consensus tree. To generate an input, we used a given template tree for which

we computed 40 randomly refined input trees. While the template tree can be equal to the strict

consensus tree of the input trees as desired, the random refinement can also produce additional

consensus clusters which would refine the template tree. Therefore, we omitted generated

instances with additional consensus clusters. Template trees were generated as complete b-ary

trees of depth d, denoted Cd,b, for each d ∈ {3, 4} and b ∈ {6, 7, 8, 9}. For each such template

tree we generated 10 random instances. Thus, we generated 80 random cases overall, where each

one consists of 40 input trees. Next, we computed for each of these inputs an exact score and

a heuristic estimate by solving the corresponding subproblems using our subproblem approach.

To compute the exact score we used the algorithm from Chang et al. (2013). We computed a

heuristic estimate for each instance of the gene duplication problem by taking the best score

of 50 DupTree runs for this instance. The scores for each of these runs was computed by

running DupTree 20 times on each subproblem of the original problem instance, and summing

up the best scores found for each subproblem. To address how the species trees with optimal
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scores differ from their heuristic estimates in terms of their topologies, rather than their gene

duplication scores, we computed their Robinson Foulds (RF) distance [Robinson and Foulds

(1981)].

Table 4.1: Average running time ratios between using the exact algorithm and DupTree under our sub-
problem approach. The runtime reported for DupTree is the aggregated time of repeating
DupTree 20 times. The measuring scales are minutes as units.

Depth Out degree Taxa Exact time DupTree time Exact time
DupTree time

3 6 216 0.03 0.09 0.31
3 7 343 0.20 0.14 1.44
3 8 512 1.44 0.21 7.01
3 9 729 14.39 0.29 58.88
4 6 1296 0.15 0.53 0.29
4 7 2401 1.21 0.97 1.36
4 8 4096 13.40 1.67 8.04
4 9 6561 159.56 2.71 58.84

Results. Figure 4.6 shows that the error rate of the duplication score computed by DupTree

increases monotonically with the out degree for both depths. While the error rates of the

estimated DupTree scores are within 1% of the corresponding optimal duplication scores, the

RF distance between these trees ranges between 10% to 24% of the maximum possible RF score

(i.e., 2(n − 2) for two binary n-taxon trees). Table 4.1 shows that running times of DupTree

are much faster for large node degrees b. In summary, we demonstrated that our approach can

compute exact scores for large-scale instances when their strict consensus tree has a bounded

degree. Moreover, by replacing exact solvers with heuristic solvers for each subproblem, we can

obtain further speedups.

4.4 Conclusion

While we show that the gene duplication problem is not Pareto for clusters, we prove that

this problem satisfies a slightly weaker version of this property, called weak Pareto. The weak

Pareto property allows us to design an efficient parameterized algorithm for the gene duplication

problem for input trees with the same taxon set. The parameter is the maximum degree of

the strict consensus tree of the input trees. This parameterization can be, as we show in
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our empirical studies, highly beneficial in practice. Thus our algorithm provides a substantial

improvement in runtime and scalability when compared to previous solutions, which enables

large-scale analyzes using the gene duplication problem. Further, our parameterized algorithm

allows the inference of exact large-scale studies for the gene duplication problem that, so far,

were only possible to be estimated by using heuristics.
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CHAPTER 5. PHYLOGENETIC TREE COMPLETION I

We describe an efficient approach that adopts the Strict Consensus Approach to also handle

unrestricted supertree problems. This is achieved by transforming an unrestricted instance of a

supertree problem into a corresponding restricted instance of this problem, which then can be

processed by the Strict Consensus Approach.

A key part of this transformation is a tree that is guiding this procedure, called guidance

tree. Guidance trees for an unrestricted instance are unrooted trees that satisfies the non-

contradiction property [Ranwez et al. (2007)]. Existing methods, such as the Strict Consensus

Merger(SCM) [Huson et al. (1999); Fleischauer and Böcker (2016)], are available for the efficient

construction of complex guidance trees that in practice often allow to break down supertree

instances into much smaller sub-instances [Moon and Eulenstein (2016)].

Figure 5.1: An illustration of Unrestricted and Unrooted Tree Rooting problem and Unrestricted and
Rooted Tree Fill-in problem.

The transformation consists of two steps, a first step that is rooting the input trees, which

is followed by a second step that is filling in these trees such that they are sampled from a

common set of species. For the first step, we introduce the Unrestricted and Unrooted Tree

Rooting problem that given an unrooted guidance tree and an unrestricted instance of input
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trees, seeks a rooting of these trees such that they are displayed by some rooted version of the

guidance tree. Figure 5.1 depicts an example instance of this problem in Diagram 1, where

the trees t1, . . . , tk represent an unrestricted supertree instance, and tree G is a corresponding

guidance tree. Diagram 2 illustrates a solution to this instance, which is a rooting of the input

trees, i.e., the trees t′1, . . . , t′k, and a rooting of the guidance tree, i.e., G′, displaying the rooted

input trees. For the second step, we introduce the Unrestricted and Rooted Tree Fill-in problem

that given a collection of rooted gene trees sampled from different species and a corresponding

guidance tree, seeks a collection of rooted trees sampled from the same species with an overall

minimum number of nodes such that (i) each tree displays exactly one of the input gene trees,

and (ii) their strict consensus tree is a refinement of the guidance tree (note the the guidance

tree is a refinement of itself). Figure 5.1 is illustrating an example, where Diagram 2 and

Diagram 3 represent an instance for the Unrestricted and Rooted Tree Fill-in problem and its

solution respectively. We have devised efficient algorithms for the Unrestricted and Unrooted

Tree Rooting problem and the Unrestricted and Rooted Tree Fill-in problem that effectively

adopt the Strict Consensus Approach to handle unrestricted supertree problems.

Finally, we demonstrate the performance of our new approach for the unrestricted gene

duplication problem when compared with standard heuristics for this problem using simulated

studies and published empirical data sets.

5.1 Unrestricted and Unrooted Tree Rooting

Let P = (t1, . . . , tk) be a profile of unrestricted and unrooted trees and G be a guidance

tree for P . A rooting in G is defined by selecting an edge er ∈ E(G) on which the root is to be

placed. Such a rooted tree is denoted by G(er), and er is called rooting edge. As a preliminary

step, we adapt the transformed digraph from Górecki and Eulenstein (2012) in order to solve

the Unrestricted and Unrooted Tree Rooting problem that finds a rooted version of unrooted

input trees.

Let G′ = G(er) be the rooted guidance. For i ∈ {1, · · · , k}, the restricted subtree G′i is

defined as G′|L(ti). We establish the digraph, denoted by Di, as V (Di) = V (ti) and E(Di) =

{〈v, w〉, 〈w, v〉|{v, w} ∈ E(ti)}, and the edges of Di are labeled by G′i as follows. If v ∈ L(G′i),
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〈v, w〉 ∈ E(Di) is labeled by v. Otherwise, 〈v, wl〉 ∈ E(Di) is labeled by lcaG′i

(⋃
j,j 6=lmj

)
where mj is the label of 〈wj , v〉. (∀j, 〈wj , v〉 ∈ E(Di)). Figure 5.2 depicts an example of this

transformation, where the node set V (Di) is identical with V (ti) and the edges in E(Di) are

created and labeled by ti and G′i.

Figure 5.2: An example of a transformed digraph Di from a given guidance tree G, er ∈ E(G) and an
input tree ti. For the brevity, lcaG′

i
({a, b}) is denoted by a+ b here.

The edge 〈wj , v〉 ∈ E(Di) is called incoming, and the edge 〈v, wj〉 ∈ E(Di) is called outgoing.

A pair of incoming and outgoing edges of {v, wj} is categorized as 1) empty: none of edges

is labeled as r(G′i), 2) in-single: only incoming edge is labeled as r(G′i), 3) out-single: only

outgoing edge is labeled as r(G′i), and 4) double: both edges are labeled as r(G′i). If v ∈ Vint(ti),

the node v ∈ Di is classified based on pairs of incoming and outgoing edges; M1: one pair is

in-single, and other pairs are out-singles, M2: one pair is empty, and other pairs are out-singles,

M3: one pair is double, and other pairs are out-singles, M4: at least two pairs are doubles,

and at least one pair is out-single, M5: all pairs is double, and M6: all pairs is out-single.

Figure 5.3 illustrates the categories of edge pairs and node types. The original transformed

digraph and Lemma 5.1.1 have been proposed by Górecki and Eulenstein (2012).

Figure 5.3: The categories of edge pairs and node types in a transformed graph.

Lemma 5.1.1 (Górecki and Eulenstein (2012)). The following four cases are mutually exclusive.

1. Di has one M2 node and all others are M1.
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2. Di has two M2 nodes that share the empty pair, and all others are M1.

3. Di has one M6 node, and all others are M1.

4. Di has one of M3, M4, or M5 nodes, and all others are M1, M3, M4, or M5.

To apply the Strict Consensus Approach to unrestricted and unrooted median tree problem

instances, as the first step of our method, we transform unrestricted and unrooted input trees

into corresponding unrestricted and rooted trees.

Problem 5.1.1 (Unrestricted and Unrooted Tree Rooting Problem).

Input: An unrestricted and unrooted profile P = {t1, · · · , tk} and a rooted tree G′ = G(er)

where G is a guidance tree for P and er ∈ E(G).

Output: An unrestricted and rooted profile P ′ = {t1(e1), · · · , tk(ek)} where ei ∈ E(ti)

(∀i ∈ {1, · · · , k}) such that G′ is a guidance tree for P ′. (ei is called a non-

contradict rooting edge.)

Lemma 5.1.2. Let ti be a tree in an unrooted profile P , G be a guidance tree for P , G′ = G(er)

be a rooted tree where er ∈ E(G), and Di be the transformed digraph.

1. If Di has one or two M2 node(s), then the empty pair of M2 corresponds to the non-

contradict rooting edge in E(ti).

2. If Di has one M6 node, then all out-single pairs of M6 correspond to the non-contradict

rooting edges in E(ti).

3. If Di has one of M3, M4, or M5 nodes, then all pairs of M3, M4, and M5 correspond to

the non-contradict rooting edges in E(ti).

Proof. Let Gi = G|L(ti) and G′i = G′|L(ti).

1. Let ei = (v, w) ∈ E(ti) be corresponded to the empty pair of M2. The full split

V |W ∈ Σ(ti) is defined by removing of the edge ei. Let v′ = lcaG′i(V ), w′ = lcaG′i(W ),

then v′, w′ < r(G′) because the empty pair is labeled as < r(G′). If v′ or w′ is not a child

of r(G′), then the empty pair is supposed to be a single pair, hence, v′, w′ ∈ ChG′(r(G′)).



www.manaraa.com

33

Let t′i = ti(ei), then we observe that H(G′i) = H(G′i(v
′)) ∪ H(G′i(w

′)) ∪ L(G′i) and

H(t′i) = H(t′i(v)) ∪ H(t′i(w)) ∪ L(t′i). Because of Σ(Gi) ⊆ Σ(ti), H(G′i(v
′)) ⊆ H(t′i(v))

and H(G′i(w
′)) ⊆ H(t′i(w)), hence, H(G′i) ⊆ H(t′i) and ei is the non-contradict rooting

edge.

2. Let v ∈ V (ti) be corresponded to the M6 node and ej = {v, wj} be incident edges to

v. The full split V |Wj is defined by removing the edge ej . Let w′j = lcaG′i(Wj), then

w′j is a child of r(G′i) because lcaG′i(V ) = r(G′i) by the property of M6. We observe

that H(G′i) =
(⋃

j H(G′i(w
′
j))
)
∪ L(G′i). Let’s pick an arbitrary ej∗ among ej ’s and

t′i = ti(ej∗), then H(t′i) =
(⋃

j H(t′i(wj))
)
∪
(⋃

j 6=j∗Wj

)
∪L(t′i). Because of Σ(Gi) ⊆ Σ(ti),

H(G′i(w
′
j)) ⊆ H(t′i(wj)). Hence, H(G′i) ⊆ H(t′i) and all ej ’s are the non-contradict rooting

edges.

3. Suppose we choose a single pair v → w ∈ E(Di) (among all pairs of M3, M4, and M5)

and the corresponding edge ei = (v, w) ∈ E(ti) as the rooting edge. The full split V |W

is defined by removing of the edge ei. Let v′ = lcaG′i(V ) and w′ = lcaG′i(W ), then

v′ = r(G′i) and w′ < r(G′i). Let t′i = ti(ei), then, we observe that H(G′i) =
(
H(G′i|V ) \

V
)
∪H(G′i(w

′))∪L(G′i) andH(t′i) = H(t′i(v))∪H(t′i(w))∪L(t′i). Because of Σ(Gi) ⊆ Σ(ti),

H(G′i|V ) \ V ⊆ H(t′i(v)) and H(G′i(w
′)) ⊆ H(t′i(w)), hence, H(G′i) ⊆ H(t′i) and ei is one

of the non-contradict rooting edges. A similar proof works for a double pair v ↔ w.

Proposition 5.1.1. The time complexity of Algorithm 3 is O(kn), where n = |L(P )| and k is

the number of trees in P .

Proof. The proof of correctness follows from Lemma 5.1.2. An lca operation can be computed

in constant time after an initial preprocessing step requiring O(n) time [Górecki and Eulenstein

(2012)], hence, the labeling procedure (lines 5 – 9) can be computed in O(n) time. The other

two inner-for loops (lines 3 – 11) require O(n) iterations. The time required by the while loop

(lines 12 – 19) is O(n). The outer for-loop (line 1 – 21) is executed k times, the entire algorithm

requires O(kn) time.
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Algorithm 3 Unrestricted and Unrooted Tree Rooting(P , G(er))
Input: An unrestricted/unrooted profile P = {t1, · · · , tk} and a rooted tree G′ = G(er) where

G is a guidance tree for P and er ∈ E(G).
Output: An unrestricted/rooted profile P ′ = {t1(e1), · · · , tk(ek)} where ei ∈ E(ti) (∀i ∈

{1, · · · , k}) such that G′ is a guidance tree for P ′.
1: for all ti ∈ P do
2: G′

i = G′|L(ti), V (Di) = V (ti)
3: for all {v, w} ∈ E(ti) do Add 〈v, w〉 and 〈w, v〉 to E(Di)
4: end for
5: for all 〈v, wl〉 ∈ E(Di) do . Suppose 〈wj , v〉 is labeled by mj

6: if v ∈ L(ti) then 〈v, wl〉 is labeled by v
7: else 〈v, wl〉 is labeled by lcaG′

i

(⋃
j,j 6=lmj

)
(∀j if 〈wj , v〉 ∈ E(Di))

8: end if
9: end for

10: for all v ∈ V (Di) do Set the type of v among M1~M6
11: end for
12: while ei is NILL do . Suppose ei is initialized as NILL
13: v = POP (V (Di))
14: if v is the type M2 then
15: Find the incident empty pair and set the corresponding edge as ei
16: else if v is not M1 then
17: Select an incident pair arbitrarily and set the corresponding edge as ei
18: end if
19: end while
20: Add ti(ei) to P ′

21: end for

5.2 Unrestricted and Rooted Tree Fill-in

Now, as the second step of our method, we transform unrestricted and rooted trees into

corresponding restricted and rooted ones to apply the Strict Consensus Approach to unrestricted

and unrooted median tree problem instances.

Problem 5.2.1 (Unrestricted and Rooted Tree Fill-in Problem).

Input: An unrestricted and rooted profile P = {t1, · · · , tk} and a guidance tree G for P .

Output: A restricted and rooted profile Q ∈ 〈P 〉G such that |Q| = minQ′∈〈P 〉G |Q
′|.

Lemma 5.2.1. Let t be a tree in a rooted profile P and G be a guidance tree for P . If T ∈ 〈t〉G,

then H(G) ∩
(
H(t) \ H(G|L(t))

)
= ∅ and |H(T )| ≥ |H(G)|+ |H(t) \ H(G|L(t))|.

Proof. For the first part,H(G)∩
(
H(t)\H(G|L(t))

)
= (H(G)∩H(t))\H(G|L(t)). For any cluster

c ∈ H(G) ∩ H(t), we observe that c ∩ L(t) = c and c ⊆ L(t). Hence, if c ∈ H(S) ∩ H(t), then

c ∈ H(S|L(t)). It implies (H(S)∩H(t))\H(S|L(t)) = ∅. For the second part, let f : H(T )×L →

H(TL) be surjective such that ∀c′ ∈ H(TL),∃c ∈ H(T ), c′ = c ∩ L where T is a tree, L ⊆ L(T )
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is a set of leaves, and TL is a tree on L. From T ∈ 〈t〉G, we observe that H(G) ⊆ H(T ) and

f(H(T ),L(t)) = H(T |L(t)) = H(t). Let C be a set of clusters such that H(T ) = H(G) ∪ C

and H(G) ∩ C = ∅. It follows |H(T )| = |H(G)|+ |C|. From H(t) = f(H(T ),L(t)) = f(H(G) ∪

C,L(t)) = H(G|L(t)) ∪ f(C,L(t)), we observe that H(t) \ H(G|L(t)) ⊆ f(C,L(t)). Hence,

|C| ≥ |f(C,L(t))| ≥ |H(t) \ H(G|L(t))| and |H(T )| ≥ |H(G)|+ |H(t) \ H(G|L(t))|.

Figure 5.4: An illustration of the iLCA insertion.

Let T be a rooted tree, A ⊆ L(T ) be a set of leaves, vlca = lcaT (A), and ChT (vlca) =

{v1, ..., vm}. If there exists set of nodes B = {v1, ..., vl} ⊂ ChT (vlca) (l < m) such that

A ⊆
⋃
v∈B CT (v) and A ∩ CT (v) 6= ∅ (∀v ∈ B), then we can insert the intrinsic least common

ancestor (iLCA) of A to be the parent of all nodes in B and the child of vlca. Figure 5.4 depicts

an example of the iLCA insertion.

Algorithm 4 Unrestricted and Rooted Tree Fill-in(P , G)
Input: An unrestricted/rooted profile P = {t1, · · · , tk} and a guidance tree G for P .
Output: A restricted/rooted profile Q ∈ 〈P 〉G such that |Q| = minQ′∈〈P 〉G |Q′|.
1: for all t ∈ P do
2: T = G
3: for all A ∈ H(t) \ H(G|L(t)) do . let vlca = lcaT (A)
4: for all va ∈ A do
5: Find the path between vlca and va, which is vlca, vch, . . . , va
6: B = B ∪ vch . B ⊂ ChT (vlca) because A ∈ H(t) \ H(G|L(t))
7: end for
8: V (T ) = V (T ) ∪ {vilca}
9: Set PaT (vilca) = vlca and ChT (vilca) = B

10: end for
11: Add T to Q . from the definition, if Q ∈ 〈P 〉G, then G ≤ SC(Q).
12: end for

Proposition 5.2.1. Algorithm 4 runs in O(kn2) time, where n = |L(P )| and k is the number

of trees in P .
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Proof. Suppose that the cluster A′ is produced by inserting the ilca of A ∈ H(t) \ H(G|L(t))

through lines 3 – 10. Lemma 5.2.1 guarantees that A′ ∩ L(t) = A and the number of the

produced clusters is |H(t) \ H(S|L(t))|, which is the minimum. The for-loop (lines 3 – 10)

requires O(n) executions, since |H(t) \ H(G|L(t))| < |n|. An lca operation can be computed in

constant time after an initial preprocessing step requiring O(n) time [Górecki and Eulenstein

(2012)]. The inner for-loop (lines 4 – 7) are computable in O(n) since |A|, |B| < |n|. Thus, the

for-loop (lines 3 – 10) runs in time O(n2). The outer for-loop (lines 1 – 12) is executed k time,

which the desired runtime follows.

5.3 Experiments

We demonstrate the scalability and accuracy of our new method when applied to the gene

duplication problem [Eulenstein et al. (2010); Goodman et al. (1979)]. Given a collection of

gene trees, the gene duplication problem seeks a species tree that is a median tree for the input

trees under the gene duplication score. This problem is NP-hard [Ma et al. (2000)], W [2]-

hard when parameterized by the gene duplication score [Bansal and Shamir (2011)] and hard to

approximate better than a logarithmic factor [Bansal and Shamir (2011)]. While exact solutions

for the gene duplication problem are coming into the reach of smaller phylogenetic studies

(e.g., 22 taxa [Chang et al. (2013)]), for large-scale studies such solutions remain out of reach.

Therefore, local search heuristics have been proposed [Bansal and Eulenstein (2013); Wehe et al.

(2013)], analyzed, and applied to compute supertrees from gene trees [Cotton and Page (2002);

Martin and Burg (2002); McGowen et al. (2008); Page (2000)]. However, they warrant no

performance guarantee on the computed species trees, and consequently, their accuracy cannot

be analyzed. Recently, using the strict consensus approach, it has been demonstrated that the

restricted gene duplication problem can be solved for instances of complete gene trees with up

to 6, 561 taxa [Moon et al. (2016)]. Given these promising results, we analyze our new method

when applied to the unrestricted gene duplication problem.



www.manaraa.com

37

5.3.1 Empirical study

We compared the gene duplication scores computed by our new approach and the heuristic

DupTree [Wehe et al. (2008)] using published empirical data sets.

Data sets. We used the seabird data set that consists of 7 incomplete rooted trees representing

the evolutionary histories of proper subsets of an overall set of 121 seabird species [Kennedy et al.

(2002)]. The rooted trees in the data set have been computed by standard phylogenetic inference

methods such as maximum parsimony or maximum likelihood with outgroup rootings. However,

outgroup rooting can result in incorrect rootings when evolutionary events cause heterogeneity

in the gene trees [Holland et al. (2003); Huelsenbeck et al. (2002)]. To avoid inaccurate rootings,

we interpreted the seabird data set as unrooted trees.

Experimental Setting. We generated the profile P of 7 incomplete unrooted trees from the

seabird data set and computed the unrooted guidance tree G by using the SCM method [Huson

et al. (1999)]. The unrooted guidance tree G has 188 edges, and hence the same number of

rooted guidance trees are computed. For each rooted guidance tree G′, we executed our proposed

algorithms through the following two steps. Step 1: Algorithm 3 takes the rooted guidance tree

G′ and the profile P as input and produces the profile P ′ of 7 incomplete rooted trees as output.

Step 2: Algorithm 4 takes the rooted guidance tree G′ and the profile P ′ as input and produces

the profile Q of 7 complete rooted trees as output. In summary, we produced 188 instances of

the rooted guidance tree and profiles of 7 incomplete and complete rooted trees.

We evaluated the performance of the strict consensus approach for computing species trees

of the gene duplication problem by using the generated instances. The approach takes the

rooted guidance tree and the profile of complete rooted trees as input and also requires a value

kmax, which determines that sub-instances of size not larger than kmax are solved exactly, and

otherwise, are addressed heuristically by running DupTree. Due to the performance limitations

of our standard working station, we set kmax = 9. Every rooted guidance tree in the generated

188 instances has 10 multifucations, and 2 of these multifurcations has the out-degree of greater

than kmax. Therefore, 8 subinstnaces were solved exactly and 2 sub-instances are addressed

heuristically. For the baseline method, DupTree was executed with the profile of 7 incomplete
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rooted trees in the instances. For each instance, we reiterated the computing of species trees

1, 000 times separately by the strict consensus approach and DupTree. In the following section,

we present one of the results that contain species trees of the lowest gene duplication score.

Figure 5.5: Distributions of the gene duplication scores of species trees that are computed by the strict
consensus approach [left] and the DupTree heuristic [right].

Results and Discussion. Figure 5.5 depicts the distributions of the gene duplication scores of

species trees that are computed by the strict consensus approach and the DupTree heuristic.

The distribution of the strict consensus approach is right-skewed. In detail, 26.3% of the species

trees that were computed by the strict consensus approach have the minimum gene duplication

score of 16, but only 0.4% of those computed by DupTree have the minimum score of 16.

These distributions demonstrate that the strict consensus approach improves significantly on

the accuracy when compared to the DupTree results. This improvement can be explained by

observing that the strict consensus approach solves all of the 10 sub-instances of the instance

exactly, with the exception of 2 sub-instances that are addressed heuristically. Despite of this

astonishing improvement, the strict consensus approach spent 30% more time than DupTree.

In detail, the average computing times of the strict consensus approach is 8.5 seconds, and the

times of the DupTree is 6.5 seconds.

5.3.2 Simulated study

We analyzed simulated data sets with a maximum of 2744 taxa, where each instance contains

20 incomplete unrooted trees.

Data sets. Unrooted guidance trees were created as b-ary trees for b ∈ {6, 7, 8}. Every b-ary
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tree has the unique center node with an edge length of 4 between the center node and any leaf,

and hence the number of leaves of the b-ary trees are 750, 1512, and 2744. The values for b

and the length of 4 were determined by the performance limitations of our standard working

station. For each unrooted guidance tree G, an intermediate profile consisting of 20 complete

unrooted trees was computed, where each such tree is a random refinement of the guidance tree

G. We then converted the intermediate profile into a profile P of incomplete unrooted trees by

replacing each tree T in the intermediate profile by the tree T |A for an independent random set

A ⊆ L(T ) (i.e., the set A is determined independently for each tree T ). The probability that a

leaf in L(T ) is selected for the subset A is called the leaf selection probability, and we produced

two profiles P0.4, P0.8 separately from the intermediate profile by setting the probability as 0.4

and 0.8.

Experiment Setting. We computed the rooted guidance tree G′ by rooting an arbitrary edge

of the unrooted guidance tree G. For each rooted guidance tree G′, we executed our proposed

algorithms through the following two steps. Step 1: Algorithm 3 takes the rooted guidance

tree G′ and the profile P0.4 (P0.8) as input and produces the profile P ′0.4 (P ′0.8) of 20 incomplete

rooted trees as output. Step 2: Algorithm 4 takes the rooted guidance tree G′ and the profile

P ′0.4 (P ′0.8) as input and produces the profile Q0.4 (Q0.8) of 20 complete rooted trees as output.

By repeating the procedure 1, 000 times, we produced a total number of 6, 000 instances of the

rooted guidance tree and profiles of 20 incomplete and complete rooted trees.

We evaluated the performance of the strict consensus approach for computing species trees

of the gene duplication problem by using the generated instances. We set kmax = 9, which is

same as the previous empirical study. Therefore, all of subinstnaces were solved exactly because

all internal nodes of rooted guidance trees that are generated from b-ary trees (b ∈ {6, 7, 8}),

have out-degree less than kmax. For the baseline method, we executed DupTree with the profile

of 20 incomplete rooted trees in each generated instance.

Results and Discussion. The strict consensus approach computed exact solutions while DupTree

is heuristically estimating these solutions. Figure 5.6 shows that the error rate of DupTree

increases as the number of leaves increases, and overall error rates are dramatically increased

on the leaf selection probability of 40% than one of 80%. Moreover, Figure 5.7 shows that
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Figure 5.6: Distributions of the normalized gene duplication score differences of species trees that are
computed by the strict consensus approach and the DupTree heuristic.

the gene duplication problem can be solved optimally in a reasonable time by using the strict

consensus approach.

Figure 5.7: Average running times in second of computing species of the gene duplication problem by
the strict consensus approach and the DupTree heuristic.

5.4 Conclusion

There is an increased interest in making NP-hard supertree problems available for large-

scale species tree construction. While it has been demonstrated that the strict consensus tree
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approach can successfully synthesize such trees, it is only able to handle restricted supertree

problems, which have largely limited applicability in practice. In this work, we presented a novel

approach that is overcoming this stringent limitation by adopting the strict consensus approach

to also handle unrestricted supertree problems. Our studies on simulated and empirical studies

established that our approach, implementing our efficient algorithms, makes the strict consensus

tree approach a powerful tool for addressing large-scale supertree problems in their unrestricted

version. While the approach is limited by supertree problems that satisfy (in their restricted

version) the Pareto for clusters property and the substructure property, many such problems

have not been analyzed whether they satisfy these properties. Future work will focus on such

analyzes, and furthermore, investigate if other desirable Pareto properties can be used to address

NP-hard supertree problems more effectively.
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CHAPTER 6. PHYLOGENETIC TREE COMPLETION II

We introduce a novel approach to adopt the Strict Consensus Approach to handle unre-

stricted and unrooted median tree problem instances of large size. This approach consists of

new computational problems and efficient algorithms to solve them.

In detail, our approach transforms unrestricted and unrooted input trees into correspond-

ing restricted and rooted ones. This transformation is guided by a special tree, called the

guidance tree, that satisfies the non-contradiction property [Ranwez et al. (2007)] to make this

transformation possible. Existing methods, such as the Strict Consensus Merger(SCM) [Hu-

son et al. (1999); Fleischauer and Böcker (2016)], are available for the efficient construction of

complex guidance trees that in practice often allow to break down instances into much smaller

sub-instances [Moon and Eulenstein (2016)].

Figure 6.1: An illustration of the transformation from unrestricted and unrooted trees to the restricted
and rooted trees.
Diagram 1: Unrestricted → Diagram 2: Restricted & Unrooted → Diagram 3: Rooted

The transformation of a collection of unrestricted and unrooted trees consists of two steps.

First the trees are transformed into restricted trees by solving the “Guidance Tree based Fill-in

Problem”, which are then rooted by solving the “Guidance Tree based Rooting Problem”. The

Guidance Tree based Fill-in Problem seeks, for a given collection of unrestricted and unrooted
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trees t1, . . . , tk and a corresponding guidance tree G, a restricted version of the input trees

T1, . . . , Tk with an overall minimum number of nodes, such that (i) each restricted tree Ti

displays one unrestricted tree ti, and (ii) their strict consensus tree SC(Q) is a refinement of, or

identical to, the guidance tree G. The Guidance Tree based Rooting Problem seeks, for a given

collection of restricted and unrooted trees T1, . . . , Tk and a rooted guidance tree G′, a rooted

version of the input trees T1(e1), . . . , Tk(ek) such that (i) each rooted tree Ti(ei) is the rooted

version of one unrooted tree Ti and (ii) their strict consensus tree SC(Q′) is identical to the

rooted guidance tree G′(er).

To solve the here introduced problems, the Guidance Tree based Fill-in Problem and the

Guidance Tree based Rooting Problem, we describe efficient algorithms. Finally, we demon-

strate the performance of our algorithms for the Strict Consensus Approach when applied to

unrestricted and unrooted instances of the classical gene duplication problem, in comparison

with standard heuristic approaches for this problem using simulated and published empirical

data sets.

6.1 Unrestricted and Unrooted Tree Fill-in

We define the Unrestricted and Unrooted Tree Fill-in problem and propose the efficient

algorithm for solving this problem. For a given profile of unrestricted and unrooted trees

t1, . . . , tk and a corresponding guidance tree G, a restricted version of the input trees T1, . . . , Tk

with an overall minimum number of nodes such that (i) each restricted tree Ti displays one

unrestricted tree ti and (ii) their strict consensus tree SC(Q) is a refinement of or identical to

the guidance tree G.

Problem 6.1.1. (Unrestricted and Unrooted Tree Fill-in Problem)

Input: An unrooted profile P = {t1, · · · , tk} such that L(ti) ⊆ L(P ) and a guidance tree

G for P such that L(G) = L(P ) and G|L(ti) ≤ ti (∀i ∈ {1, · · · , k}).

Output: An unrooted profile Q ∈ 〈P 〉G such that |Q| = minQ′∈〈P 〉G |Q
′|.

Lemma 6.1.1. Let P be an unrooted profile and G be a guidance tree for P . If Q ∈ 〈P 〉G, then

G ≤ SC(Q).
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Figure 6.2: Schematic representation of the Unrestricted and Unrooted Tree Fill-in problem. Unre-
stricted input trees are transformed into the corresponding restricted trees.

Proof. By the definition of the restricted span 〈P 〉G, ∀T ∈ Q is a refined tree of G, hence,

G ≤ SC(Q).

Lemma 6.1.2. Let t be a tree in an unrooted profile P , and G be a guidance tree for P . If

T ∈ 〈t〉G, then Σ(G) ∩ (Σ(t) \ Σ(G|L(t))) = ∅ and |Σ(T )| ≥ |Σ(G)|+ |Σ(t) \ Σ(G|L(t))|.

Proof. For the first part, Σ(G)∩(Σ(t)\Σ(G|L(t))) = (Σ(G)∩Σ(t))\Σ(G|L(t)) = Σ(t)∩(Σ(G)\

Σ(G|L(t))). If L(t) = L(G), then Σ(G) \ Σ(G|L(t)) = ∅. Otherwise, Σ(G) ∩ Σ(t) = ∅.

For the second part, let f : Σ(T ) × L → Σ(TL) be surjective function such that ∀σ′ ∈

Σ(TL),∃σ ∈ Σ(T ), σ′ = σ ∩ L where T is a tree, L ⊆ L(T ) is a leaves, and TL is a tree

on L. From T ∈ 〈t〉G, follows that Σ(G) ⊆ Σ(T ) and f(Σ(T ),L(t)) = Σ(T |L(t)) = Σ(t). Let

Σ = Σ(T )\Σ(G), then |Σ(T )| = |Σ(G)|+|Σ|. From Σ(t) = f(Σ(T ),L(t)) = f(Σ(G)∪Σ,L(t)) =

Σ(G|L(t))∪f(Σ,L(t)), it follows Σ(t)\Σ(G|L(t)) ⊆ f(Σ,L(t)). Therefore, |Σ| ≥ |f(Σ,L(t))| ≥

|Σ(t) \ Σ(G|L(t))| and |Σ(T )| ≥ |Σ(G)|+ |Σ(t) \ Σ(G|L(t))|.

A rooting in a tree T is defined by selecting an edge e ∈ E(T ) on which the root is to be

placed. Such a rooted tree is denoted by T (e), and e is the rooting edge. There exist a bijective

mapping, denoted byM : V (T )→ V (Te), between V (T ) and V (Te) \ {r(Te)}.

Lemma 6.1.3. Let t be a tree in an unrooted profile P , and G be a guidance tree for P . If

σ = A|B ∈ Σ(t) \ Σ(G|L(t)), then G(A) and G(B) share a single node v ∈ V (G).

Proof. Suppose that G(A) and G(B) does not share a single node. If G(A) and G(B) are not

connected, then there exists at least one split σ′ ∈ Σ(G) such that σ′ ∩ L(t) = σ. This is a
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Algorithm 5 Unrestricted and Unrooted Tree Fill-in(P , G)
Input: An unrooted profile P = {t1, · · · , tk} such that L(ti) ⊂ L(P ) and a guidance tree G for

P such that L(G) = L(P ) and G|L(ti) ≤ ti (∀i ∈ {1, · · · , k}).
Output: An unrooted profile Q ∈ 〈P 〉G such that |Q| = minQ′∈〈P 〉G |Q′|.
1: for all t ∈ P do
2: T = G
3: Σ = Σ(t) \ Σ(G|L(t))
4: for all σ ∈ Σ do . let σ = A|B
5: Pick arbitrarily vb ∈ B
6: eb = (vb, v

′
b) ∈ E(T ) . v′b ∈ Vint(T )

7: vlca = LCAT (eb)(A)
8: for all va ∈ A do
9: v = va

10: Z = ∅
11: while v /∈ Z & PaT (eb)(v) 6= vlca do
12: Add v to Z
13: v = PaT (eb)(v)
14: end while
15: if PaT (eb)(v) = vlca then
16: Add v to Vch
17: end if
18: end for
19: vc ∈ V (T ): mapped node of vlca
20: Vdet ⊂ V (T ): mapped nodes of Vch
21: Add vnew to V (T )
22: Add (vc, vnew) to E(T )
23: for all vdet ∈ Vdet do
24: Remove (vc, vdet) ∈ V (T )
25: Add (vnew, vdet) to E(T )
26: end for
27: end for
28: Add T to Q
29: end for
30: return Q

contradiction since σ ∈ Σ(G|L(t)).

If G(A) and G(B) share more than one node, then G(A) and G(B) share at least one edge.

Let e ∈ E(G) be a shared edge and σe = Ae|Be ∈ Σ(G) be a split from removal of e, then

A ∩ Ae 6= ∅, A ∩ Be 6= ∅, B ∩ Ae 6= ∅, and B ∩ Be 6= ∅. It follows σe ∩ L(t) ∈ Σ(G|L(t)) and

σe ∩ L(t) /∈ Σ(t). This is a contradiction since Σ(G|L(t)) ⊆ Σ(t).

Lemma 6.1.4. Let T be an unrooted tree, A,B ⊂ L(T ), and A ∩ B = ∅. Suppose that T (A)

and T (B) share a single node vc ∈ V (T ). If vb ∈ B and eb = (vb, vb′) where eb ∈ E(T ), then

M(vc) = LCAT ′(A) where T ′ = T (eb).

Proof. Let VA = {M(v) | v ∈ V (T (A))} and VB = {M(v) | v ∈ V (T (B))}, then VA ∩ VB =
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Figure 6.3: Schematic representation of the main idea of Algorithm 5.
t: an input tree, σ = A|B: defined by removal of e, G: the Guidance tree, T : the output
tree
G does not have an edge that defines σ = A|B, but T has the edge.

{M(vc)}. By the definition of the rooting, we observe that v ≤T ′ M(vc) for all node v ∈ VA

andM(vc) ≤T ′ v for all node v ∈ VB \{M(vb)}. M(vc) is the smallest upper bound of A under

≤T ′ , hence,M(vc) = LCAT ′(A).

Proposition 6.1.1. Algorithm 5 runs in O(kn2) time where k is the number of trees in a profile

P and n = |L(P )|.

Proof. By Lemma 6.1.2, the number of splits in T (line 28), |Σ(T )| = |Σ(G)|+|Σ(t)\Σ(G|L(t))|,

is the minimum among trees in 〈t〉G. Lemma 6.1.3 guarantees that vc (line 19) is the shared

node between G(A) and G(B). The algorithm uses the temporary rooted tree T (eb) (line 7) to

identify the vc, which is guaranteed by Lemma 6.1.4.

By using the rooted tree T (eb), vc is computable in O(n) time since an lca operation (line 7)

can be computed in constant time after an initial preprocessing step requiringO(n) time [Bender

and Farach-Colton (2000); Górecki and Eulenstein (2012)]. Every node (except the root) in

T (eb) has a memory reference to its unique parent node. By using the memory reference to

store the parent nodes of every node (except the root) and the data structure Q to determine

which nodes have already been visited, the for-loops (lines 8 – 18) can be computable in O(n).

The for-loops (23 – 26) are also computable in O(n) since |Vdet| < |n|. Thus, the for-loop (lines

4 – 27) runs in time O(n2). The outer for-loop (lines 1 – 29) is executed k times, from which

the desired runtime follows.
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6.2 Restricted and Unrooted Tree Rooting

We define the Restricted and Unrooted Tree Rooting problem and propose the efficient

algorithm for solving this problem. For a given profile of restricted and unrooted trees T1, . . . , Tk

and a strict consensus tree G of the profile, a rooted version of the input trees T1(e1), . . . , Tk(ek)

such that (i) each rooted tree Ti(ei) is the rooting tree of one unrooted tree Ti and (ii) their

strict consensus tree SC(Q′) is identical to the rooted guidance tree G(er).

Problem 6.2.1. (Restricted and Unrooted Tree Rooting Problem)

Input: An unrooted profile Q = {T1, · · · , Tk} such that L(Ti) = L(Q) and a rooting edge

er ∈ E(G) where G = SC(Q).

Output: A rooted profile Q′ = {T1(e1), · · · , Tk(ek)} such that G(er) = SC(Q′) where ei ∈

E(Ti).

Figure 6.4: Schematic representation of theRestricted and Unrooted Tree Rooting problem. Unrooted
input trees are transformed into the corresponding rooted trees.

Lemma 6.2.1. Let Q = {T1, · · · , Tk} be an unrooted profile, G = SC(Q), and er ∈ E(G) be a

rooting edge (defines σr). There exists an edge ei ∈ E(Ti) defines σr and G(er) = SC(Q′) for

the rooted profile Q′ = {T1(e1), · · · , Tk(ek)}.

Proof. Since Σ(S) ⊆ Σ(Ti) (∀i{1, · · · , k}), there is an edge ei ∈ E(Ti) that defines σr. If T be an

unrooted tree and er ∈ E(T ) be a rooting edge (defines σr = Ar|Br), then there exists a bijective

function f : Σ(T ) \ {σr} → H
(
T (er)

)
\ {L(T ), Ar, Br} such that f(σ) = A∨B where σ = A|B.

H
(
SC(Q′)

)
\{L(Q′), Ar, Br} = ∩iH

(
Ti(ei)

)
\{L(Q′), Ar, Br} = ∩i

(
H
(
Ti(ei)

)
\{L(Ti), Ar, Br}

)
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= ∩i{f(σj) : ∀σj ∈ Σ(Ti) \ {σr}} = {f(σj) : ∀σj ∈ ∩iΣ(Ti) \ {σr}} = {f(σj) : ∀σj ∈

Σ(G) \ {σr}}. Hence, there exists ei ∈ E(Ti) defines σr and G(er) = SC(Q′).

Algorithm 6 Restricted and Unrooted Tree Rooting(Q, G)
Input: An unrooted profile Q = {T1, · · · , Tk} such that L(Ti) = L(G) and a rooting edge

er ∈ E(G) where G = SC(Q).
Output: A rooted profile Q′ = {T1(e1), · · · , Tk(ek)} such that G(er) = SC(Q′) where ei ∈ E(Ti).
1: G′ = G(er) . σr is defined by removal of er
2: σr = Ar|Br
3: for all T ∈ Q do
4: for all e ∈ E(T ) do
5: T ′ = T (e) . σ is defined by removal of e
6: σ = A|B
7: if (Ar = A & Br = B) || (Ar = B & Br = A) then
8: Add T ′ to Q′

9: Break
10: end if
11: end for
12: end for
13: return Q′

Proposition 6.2.1. Algorithm 6 runs in O(kn) time where k is the number of trees in a profile

P and n = |L(P )|.

Proof. Lemma 6.2.1 guarantees that there exists an split σ such that σ = σr at line 7 and

SC(Q′) = G(er) at line 13. Assume σ is pre-computed when running Algorithm 5 and stored in

a map data structure in the pair of edge key and split value. The σ which is defined by removal

of e can be referenced in O(c), hence, the for-loop (lines 4 – 11) runs in time O(n). The outer

for-loop (lines 1 – 29) is executed k times, from which the desired runtime follows.

6.3 Experiments

We demonstrate the applicability of our new approach that adopts the Strict Consensus

Approach to handle unrooted and unrestricted instances. While the Strict Consensus Approach

is applicable to various median tree problems, we are choosing here the classic gene duplication

problem [Eulenstein et al. (2010); Goodman et al. (1979)]. This problem is NP-hard [Ma

et al. (2000)], W [2]-hard when parameterized by the gene duplication score [Bansal and Shamir

(2011)] and hard to approximate better than a logarithmic factor [Bansal and Shamir (2011)].
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While exact solutions for the gene duplication problem are coming into the reach of smaller

phylogenetic studies (e.g., 22 taxa [Chang et al. (2013)]), for large-scale studies such solutions

remain out of reach. Therefore, effective local search heuristics have been proposed [Bansal and

Eulenstein (2013); Wehe and Burleigh (2010)], analyzed, and applied to compute large-scale

median trees from gene trees [Cotton and Page (2002); Martin and Burg (2002); McGowen

et al. (2008); Page (2000)]. Duptree [Wehe and Burleigh (2010)] is a standard implementation

of these heuristics which we will use here for our comparative studies. All experiments were

performed on a workstation with an Intel® Xeon® CPU E7-8837 @2.66GHz with 128GB

RAM.

6.3.1 Empirical study

We evaluate the accuracy our new approach to solve the gene duplication problem in com-

parison with the program DupTree, using empirical data.

6.3.1.1 Data sets.

Multiple sequence alignments for 12 genes, each sampled from subsets of 2849 amphibian

species, were obtained from the data base Dryad repository (published in [Pyron and Wiens

(2011a,b)]). These 12 genes are C-X-C chemokine receptor type 4 (CXCR4), histone 3a (H3A),

sodium-calcium exchanger (NCX1),

pro-opiomelanocortin (POMC), recombination-activating gene 1 (RAG1), rhodopsin (RHOD),

seventh-in-absentia (SIA), solute-carrier family 8 (SLC8A3), tyrosinase (TYR), cytochrome b

(cyt-b), and the subunits of the mitochondrial ribosome genes (12S/16S). We estimated un-

rooted gene trees for each of these alignments using the software RAxML version 8.2.9 [Sta-

matakis (2014)]. The command we used was: raxmlHPC -s 〈phylip alignment file〉 -n 〈output

suffix〉 -m GTRGAMMA. These estimates were completed in 27 hours using 10 threads of our

workstation. Finally, we combined the 12 trees, which are unrestricted and unrooted, into a

profile P .
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6.3.1.2 Experimental Setting.

For the DupTree approach we follow the procedure described in [Burleigh et al. (2011)]

to root the trees in profile P . In this procedure two rooting methods were used, midpoint

rooting [Boykin et al. (2010)] and optimal re-rooting [Burleigh et al. (2011)]. Then we run

DupTree generating 500 estimates for each of the rooted profiles. The gene duplication scores

for these estimates are summarized in the section A (midpoint rooting) and B (optimal re-

rooting) of Fig. 6.5.

For our approach we computed the unrooted guidance tree G by using the SCM method [Hu-

son et al. (1999)] for the profile P . By applying our Algorithm 4 to P and G, we computed

a restricted version of P . Then we computed a rooted profile of P for each edge of G using

Algorithm 6.

Now we applied the Strict Consensus Approach to the restricted and rooted profiles gener-

ated from P by using G. Again, we were running the Strict Consensus Approach on each of

these profiles 500 times. The Strict Consensus Approach requires a value kmax that determines

the maximum size (in the number of taxa) of the sub-problems that are solved exactly, while

instances larger than kmax are addressed using the DupTree heuristic. According to the ability

of our workstation we set kmax to 9. To summarize the results we considered only the best and

the worst gene duplication scores under the 500 runs performed for each edge in G, which are

depicted in sections C (worst) and D (best) of Fig. 6.5.

6.3.1.3 Results and Discussion.

We observe that the distributions of the best and the worst guidance tree rootings, shown

in Fig. 6.5, are narrow and bell-shaped, reflecting that most sub-instances were solved exactly.

Note that under the assumption that every sub-instance is solved exactly, there would be only

one score in each of the sections C and D. An increased number of heuristically solved instances

would spread more widely in terms of scores. In detail, these phenomena can be explained by

the distributions of the node-degrees of the guidance tree G, which has 251 multifurcations,

where 9 of them have a node-degree larger than kmax. Therefore, 96.4% of sub-instances were
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Figure 6.5: Gene duplication score comparison by the different rooting methods.
A: Gene trees midpoint rooting + DupTree heuristic.
B: Gene trees optimal re-rooting + DupTree heuristic.
C: Guidance tree rooting + Strict Consensus Approach (worst).
D: Guidance tree rooting + Strict Consensus Approach (best).

solved exactly, and only 3.6% of them were addressed heuristically. The overall distributions

demonstrate that the guidance tree rooting together with the Strict Consensus Approach im-

proves significantly on the accuracy and the variance when compared with the DupTree results.

The descriptive statistics of the gene duplication scores are summarized in Table 6.1. The av-

erage time to compute the scores for A is 30 seconds, and for B is 80 minutes, and for C and

D are each 50 seconds. Note, the much longer computing time for B is caused by the frequent

re-rooting procedure of DupTree that when terminating in a local minima will re-root the input

trees to proceed [Wehe et al. (2008)].
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Table 6.1: Descriptive statistics of the gene duplication scores.
A: Gene trees midpoint rooting + DupTree heuristic.
B: Gene trees optimal re-rooting + DupTree heuristic.
C: Guidance tree rooting + Strict Consensus Approach (worst).
D: Guidance tree rooting + Strict Consensus Approach (best).

Group Average SD Median Min Max Range
A 785 42.8 771 738 1025 287
B 734 36.3 726 683 975 292
C 689 2.2 689 685 698 13
D 663 2.0 663 660 672 12

6.3.2 Simulated study

We evaluated the scalability of our approach when compared with DupTree for computing

species trees by using simulated data sets with a maximum of 2744 taxa, where each instance

contains 20 unrestricted and unrooted trees.

6.3.2.1 Data sets.

For the simulation back-bone trees were created that are unrooted b-ary trees for b ∈ {5, 6, 7},

such that each of these trees has a special center node where the path lengths between the center

node and every leaf are always 4. Consequently, the numbers of leaves of the back-bone trees are

750, 1512, and 2744. For each back-bone tree, an intermediate profile consisting of 20 restricted

and unrooted trees was computed, where each tree in the profile is a random refinement of the

back-bone tree. We then converted the intermediate profiles into profiles Pb for b ∈ {5, 6, 7} of

unrestricted and unrooted trees by replacing each tree T in each of intermediate profiles by the

tree T |A for an independent random set A ⊆ L(T ). The probability that a leaf is selected for

the subset A is called the scaffold factor. We produced profiles Pb,25, Pb,50, and Pb,75 for each

scaffold factor 25%, 50%, and 75%, and we adopted the initial back-bone trees as the guidance

trees Gb.

6.3.2.2 Experiment Setting.

Algorithm 4 took Pb,s and Gb as an input and produced the profile Qb,s of restricted and

unrooted trees for each b ∈ {5, 6, 7} and s ∈ {25, 50, 75}. Then we computed the rooted guidance
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tree G′b by using the midpoint edge of Gb. Algorithm 6 took Qb,s and G′b as an input and

produced the profile Q′b,s of restricted and rooted trees. By repeating the described procedure

500 times, we produced a total number of 4500 instances of restricted and rooted trees and its

rooted guidance tree. We set kmax = 9, and therefore, all sub-instances were solved exactly,

since the node-degrees of the guidance trees are less than kmax. For the baseline method, we

generated the unrestricted and rooted profile from Pb,s by using the midpoint rooting, and then

run DupTree to generate 500 estimates.

Figure 6.6: Error rate of DupTree heuristic by different taxa and scaffold factor.
Taxa=750 → A: Scaffold=25%, B: Scaffold=50%, C: Scaffold=75%
Taxa=1512 → D: Scaffold=25%, E: Scaffold=50%, F: Scaffold=75%
Taxa=2744 → G: Scaffold=25%, H: Scaffold=50%, I: Scaffold=75%

6.3.2.3 Results and Discussion.

Our approach computed optimal species trees, while DupTree estimated these trees heuris-

tically. Fig. 6.6 shows that the error rates of DupTree are increasing with an increasing number

of taxa. Observe that the error rates are significantly higher scored for the 25% (A,D,G) scaffold
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factor than for the 50% (B,E,H) and 75% (C,F,I) scaffold factors. This suggests that the error

rate of DupTree is greatly impacted by small scaffold factors. Fig. 6.7 shows that the gene

duplication problem can be solved optimally in a reasonable time by using our approach.

Figure 6.7: Average execution time of our approach (FTPTime) and DupTree heuristic (DupTime) by
different taxa and scaffold factor.
Taxa=750 → A: Scaffold=25%, B: Scaffold=50%, C: Scaffold=75%
Taxa=1512 → D: Scaffold=25%, E: Scaffold=50%, F: Scaffold=75%
Taxa=2744 → G: Scaffold=25%, H: Scaffold=50%, I: Scaffold=75%

6.4 Conclusion

There is an increased interest in making NP-hard median tree problems available for large-

scale species tree construction. While it has been demonstrated that the Strict Consensus

Approach can successfully synthesize such trees, it is only able to handle restricted median

problems, which have largely limited applicability in practice. In this work, we introduced a

novel approach that is overcoming these limitations by adopting the Strict Consensus Approach

to handle unrestricted median tree problems. Our studies on empirical and simulated exper-
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iments demonstrate that our approach makes the Strict Consensus Approach a powerful tool

for addressing large-scale supertree problems in their unrestricted version. While the approach

is limited to median tree problems that are weak Pareto and satisfy the substructure property,

many median tree problems have not been analyzed whether the satisfy these properties.
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CHAPTER 7. GRAPH-THEORETIC APPROACH

We propose the first clique-based formulation of the RF median tree problem. To address the

clique-based problem that is finding a minimum vertex weight clique in the compatibility graph,

we devise a graph-theoretic heuristic that is different from standard median tree heuristics. As

a preliminary step, an initial median tree is computed by a standard RF median tree heuristic.

Our clique-based heuristic takes the initial median tree as the input, and transforms it to an

equivalent starting clique in the compatibility graph. The heuristic then searches for an optimal

candidate clique within the local neighborhood of the starting clique that is the set of all cliques

into which this clique can be transform by a single m-rooted split interchange (m-RSI) operation.

This procedure defines a local search step. The optimal clique found becomes the starting clique

for the next local search step, and so on, until a local minima is found. Typically, the local

search step is executed thousands of times for large-scale inputs, and hence, an efficient local

search is imperative for the heuristic to terminate in a reasonable time. Therefore, we have

devised an algorithm for the local search that runs in linear time in the size of the starting

clique.

We demonstrate that our new approach utilized for the RF median tree problem improves

significantly on accuracy when compared to the initial median tree by using empirical and

simulated studies. In addition, the clique-based heuristic can also be applied to the deep

coalescence, gene duplication, and gene duplication-loss problems by adapting this heuristic to

the weighting functions corresponding to these problems.

Finally, we show that our clique-based heuristic can be interpreted as a standard local search

heuristic for median trees that uses a novel tree edit operation, which we call m-rMSPR. This

edit operation is fundamentally different from any of the classic edit operations used in standard

local search heuristics, which are the rooted nearest neighbor interchange (rNNI) [Robinson
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(1971); Moore et al. (1973)], rooted subtree prune and regraft (rSPR) [Swofford and Olsen

(1990); Allen and Steel (2001); Bordewich and Semple (2005)], and rooted tree bisection and

regraft (rTBR) [Swofford and Olsen (1990); Allen and Steel (2001); Chen et al. (2006)]. We

proved that while the m-RSI neighborhood does not relate to the rSPR and rTBR neighborhoods

by set containment, it properly contains the rNNI neighborhood.

7.1 Compatibility Graph

We defined a compatibility graph of rooted splits. The vertices of a compatibility graph

correspond to the rooted splits, and an edge is drawn between two vertices if they are compatible.

An example of a compatibility graph is depicted in Figure 7.1.

Figure 7.1: An example of the compatibility graph. The rooted binary tree T of 6 taxa is defined by
the clique Q of 5 vertices in the compatibility graph, and conversely.

A pair of rooted splits are compatible if one contains the other, or they are disjoint.

Definition 7.1.1. Let X be a set of n taxa. The compatibility graph CG(X ) on X has a vertex

for the rooted split on X , and there is an edge between two vertices if and only if the associated

rooted splits are compatible.

A rooted binary tree of n taxa is defined by n− 1 pairwise compatible clusters of more than

1 taxa Semple and Steel (2003b). This fact acts as a lemma for Theorem 7.1.1.
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Theorem 7.1.1. Let Q be a set of n− 1 rooted splits on X of n taxa. All pairs of rooted splits

in Q are compatible if and only if there exists a binary rooted tree on X whose set of rooted

splits is Q.

Proof. If two rooted splits pi = (Ai, Bi), pj = (Aj , Bj) in Q are compatible, then

(Ai ∪Bi) ∩ (Aj ∪Bj) ∈ {∅, (Ai ∪Bi), (Aj ∪Bj)}

Therefore, Q defines a set of n− 1 pairwise compatible clusters, which is a hierarchy on X .

Corollary 7.1.1. There exists a (n− 1)-clique in the compatibility graph on X of n taxa if and

only if there exists a binary rooted tree on X whose set of rooted splits is the vertex set of the

(n− 1)-clique.

For rooted splits pi and pj , we say that pi is included in pj if Ai ∪ Bi * Aj , Ai ∪ Bi * Bj ,

and (Ai ∪Bi) ( (Aj ∪Bj).

Definition 7.1.2. Let pi = (Ai, Bi) be a rooted split on X , pj = (Aj , Bj) be a rooted split on

Y, and X ⊆ Y. We define a function:

inc(pi, pj) = I[pi is included in pj |X ]

where pj |X = (Aj ∩ X , Bj ∩ X ) and I is the indicator function:

I[condition] =


1 condition is true

0 otherwise

Lemma 7.1.1. Let g and S be rooted binary trees, u ∈ Vint(g), v ∈ Vint(S), and L(g) ⊆ L(S).

If inc(πg(u), πS(v)) = 1, thenM(u) = v.

Proof. Let w =M(u). Since inc
(
πg(u), πS(v)

)
= 1, it follows that Cg(u) ⊂ (CS(v) ∩ L(g)) and

w ≤ v. Suppose that v 6= w, then CS(w) is a subset of the cluster of one of v’s children. Hence,

inc
(
πg(u), πS(v)

)
= 0 contradicts the assumption.
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Theorem 7.1.2. Let g and S be rooted binary trees where L(g) ⊆ L(S). For u ∈ Vint(g),

∑
v∈Vint(S)

inc(πg(u), πS(v)) ≤ 1

Proof. If inc(πg(u), πS(v)) = 1, then there is no w ∈ Vint(S) such that w = M(u) and v 6=

w by Lemma 7.1.1. Therefore, there exists at most one vertex v (∀v ∈ Vint(S)) such that

inc(πg(u), πS(v)) = 1.

7.2 Robinson-Foulds Median Tree

The RF distance between two rooted trees is defined as the number of symmetric differences

between the two sets of clusters of the two trees.

Definition 7.2.1. (RF distance Chang et al. (2013)) Let g and S be rooted binary trees where

L(g) ⊆ L(S). The RF distance is defined:

RF (g, S) =
∑

u∈Vint(g)

∑
v∈Vint(S)

2 · I[M(u) = v ∧ Cg(u) 6= CS(v) ∩ L(g)]

Proposition 7.2.1. Let g and S be rooted binary trees where L(g) ⊆ L(S). Then

RF (g, S) =
∑

u∈Vint(g)

∑
v∈Vint(S)

2 · inc
(
πg(u), πS(v)

)
Proof. If inc

(
πg(u), πS(v)

)
= 1, then M(u) = v by Lemma 7.1.1 and Cg(u) ( CS(v) ∩ L(g)

by the definition of the function inc. Hence, inc
(
πg(u), πS(v)

)
= I[M(u) = v ∧ Cg(u) 6=

CS(v) ∩ L(g)].

Let G = {g1, g2, · · · , gk} be a profile of rooted binary trees and L(G) = X . Then,

RF (G, S) =

k∑
i

RF (gi, S)

We constructed the compatibility graph CG(X ) on X and calculated the weight of each vertex

z, denoted by Winc(z), to be the total number of rooted splits in G that are included in z.

Formally,

Winc(z) =
k∑
i

∑
u∈Vint(gi)

2 · inc(πgi(u), z)
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If Q is a set of vertices in CG(X ), then total weight of Q is defined as Winc(Q) =
∑
z∈Q

Winc(z).

The optimal RF median tree is found by computing a (n − 1)-clique Q so as to minimize the

Winc(Q).

Theorem 7.2.1. Let G = {g1, g2, · · · , gk} be a profile of rooted binary trees, L(P ) = X , and

|X | = n. If Q is the (n− 1)-clique in CG(X ) minimizing Winc(Q), and S is the rooted binary

tree that is defined by the clique Q, then S minimizes RF distance RF (G, S).

Proof. By Corollary 7.1.1, the (n−1)-clique in the compatibility graph defines the rooted binary

tree S on X that has n− 1 internal vertices. Then,

Winc(Q) =
∑
z∈Q

Winc(z) =
∑
z∈Q

k∑
i

∑
u∈Vint(gi)

2 · inc(πgi(u), z)

=
k∑
i

∑
u∈Vint(gi)

∑
z∈Q

2 · inc(πgi(u), z) =
k∑
i

∑
u∈Vint(gi)

∑
v∈Vint(S)

2 · inc
(
πgi(u), πS(v)

)

=

k∑
i

RF (gi, S) = RF (G, S)

Therefore, the minimum weight clique defines the rooted binary tree S that minimize RF (G, S).

7.3 Rooted Split Interchange

In this section, we introduced a clique edit operation, called m-RSI, and a tree edit operation,

called m-rMSPR. Examples of the operations are depicted in Figure 7.2.

Definition 7.3.1. (m-rooted splits interchange (m-RSI)) Let sets Q and Q′ be (n− 1)-cliques

in the compatibility graph CG(X ) on X of n taxa. A m-RSI between Q and Q′ occurs if Q 6= Q′

and |Q \ Q′| = |Q′ \ Q| ≤ m. In order words, Q′ is obtained from Q by deleting at most m

vertices, adding the same number of vertices in CG(X ).

Definition 7.3.2. (m-rooted multiple subtrees prune and regraft (m-rMSPR)) Let T , T ′ be the

rooted binary trees that are defined by (n − 1) cliques Q, Q′ in the compatibility graph CG(X )

on X of n taxa. A m-rMSPR between T and T ′ occurs if Q can be transformed from Q′ by a

single m-RSI operation, and conversely.
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Figure 7.2: An example of 3-RSI clique edit operation and 3-rMSPR tree edit operation. Two rooted
binary trees T , T ′ of 6 taxa are defined by the two cliques Q, Q′ (respectively) of 5 vertices
in the compatibility graph. The 3-RSI operation between Q and Q′ is correlated with the
3-rMSPR operation between T and T ′.

Proposition 7.3.1. 1-RSI (1-rMSPR) does not exist.

Proof. Let S be the rooted binary tree that is defined by Q and u ∈ Vint(S). Then, πS(u) is

deterministic by rooted splits of u’s children and parent.

Proposition 7.3.1 acts as a lemma for Theorem 7.3.1.

Theorem 7.3.1. Let set Q be (n− 1)-clique in the compatibility graph CG(X ) on X of n taxa

and S be the rooted binary trees defined by Q. Suppose that a (n − 1)-clique Q′ is obtained

from Q by the single m-RSI operation. If πS(u) ∈ Q, (u ∈ Vint(S)) is replaced, then there exists

πS(v) ∈ Q, (u 6= v ∈ Vint(S)) which is also replaced and u-v has a parent-child relationship.

(i.e., u = ChS(v) or v = ChS(u)).

Proof. Suppose that πS(u) = (A,B) is replaced by the different rooted split (A′, B′) without

changing any of πS(l), πS(r), and πS(PaS(u)) where l and r are two children of u. Then,

(A′, B′) is not compatible with at least two rooted splits among πS(l), πS(r), and πS(PaS(u)).

Thus, Q′ is not a (n− 1)-clique, then this is contradiction.
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Figure 7.3: A cycle of 2-RSI (2-rMSPR) operations. Each operation can be considered as a rNNI
operation. A dotted line denotes an axis of rNNI operation, and the two rooted splits of
incident vertices of the axes are replaced in the correlated cliques.

An internal vertex u of a rooted binary tree T has two incident edges that connects its

children l and r. A rooted binary tree T ′ is obtained from T by deleting e = {u, l} (or e′ =

{u, r}), adding the edge between l (or r) and the vertex subdivides the edge that is incident

with PaT (u) and u’s sibling, and then suppressing any degree-two vertices [Moore et al. (1973);

Robinson (1971)]. This tree edit operation is called rooted nearest neighbor interchange (rNNI).

An example is depicted in Figure 7.3.

Proposition 7.3.2. rNNI = 2-RSI (2-rMSPR)

Proof. Let set Q be (n− 1)-clique in a compatibility graph CG(X ) and S be the rooted binary

tree that is defined by Q. Suppose that a (n − 1)-clique Q′ is obtained from Q by 2-RSI with

the two rooted splits πS(u), πS(v) where u, v ∈ Vint(S). Then, u = ChS(v) or v = ChS(u)

by Theorem 7.3.1. That is, the edge e = {u, v} is internal. Hence, the rNNI operation of an

internal edge (axis) can be interpreted as the 2-RSI operation between the rooted splits of the

incident vertices of the axis. Figure 7.3 shows that a cycle of 2-RSI (2-rMSPR) operations is

equivalent with a cycle of rNNI operations.
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Let T be a rooted binary tree, e = {u, v} and u ≤T v. A rooted binary tree T ′ is obtained

from T by deleting e, adding the edge between u and the vertex that subdivides the edge of T \e,

and then suppressing any degree-two vertices. This tree edit operation is called rooted subtree

prune and regraft (rSPR) [Allen and Steel (2001); Bordewich and Semple (2005); Swofford and

Olsen (1990)]. Analogously, T ′ is obtained from T by deleting e, adding an edge between vertices

such that each of the vertices subdivides the edge of one and the other component of T \ e, and

then suppressing any degree-two vertices. This tree edit operation is called rooted tree bisection

and regraft (rTBR) [Allen and Steel (2001); Chen et al. (2006); Swofford and Olsen (1990)].

Figure 7.4: An example of a rSPR operation. The figure shows that rSPR, rTBR * 3-RSI
(3-rMSPR).

Proposition 7.3.3. 3-RSI (3-rMSPR) 6= rSPR, rTBR

Proof. The proof of rSPR, rTBR * 3-RSI is illustrated at Figure 7.4. Suppose that a rooted

binary tree S′ is obtained from a rooted binary tree S by a rSPR operation that prunes the

subtree rooted at u and regrafts the subtree to the edge incident with v and w. If plS(u, v) > 3

and plS(u,w) > 3, then the (n − 1)-clique Q′ that defines S′ cannot be obtained from the

(n − 1)-clique Q that defined S by any 3-RSI operation. Hence, rSPR, rTBR * 3-RSI.

Figure 7.5 shows the proof of 3-RSI * rSPR, rTBR by a counter example ((A,B), (C,D))↔

((A,D), (B,C)).

Corollary 7.3.1.

rNNI ⊆ m-RSI (m-rMSPR) 6= rSPR, rTBR, (∀m > 1)
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Figure 7.5: An example of the resulting trees by the 2 and 3-RSI (rMSPR) operations. A dotted
line denotes an axis of the NNI operation. ((A,B), (C,D))↔ ((A,D), (B,C)) shows that
3-RSI (3-rMSPR) * rSPR, rTBR.

7.4 Local Search Problem

We provided a definition for the 3-RSI operation and formulated the related local search

problem in the compatibility graph of rooted splits.

Definition 7.4.1. (3-RSI based local search) Given a rooted binary tree S and a vertex u ∈

Vint(S), 3-RSIS(u) is a set of rooted binary trees obtained as follows (X = L(S), n = |X |):

1. Construct the (n− 1)-clique Q that defines S in the compatibility graph CG(X ).

2. Form the set of internal vertices R by adding u and u’s adjacent vertices such that |R| ≥ 2.

(ignore adjacent leaf.)

3. Find all (n− 1)-cliques Q′ in CG(X ) that |Q \ Q′| ≤ 3 and Q \ Q′ ⊆ πS(R).

4. Return every S′ that is defined by each Q′ to 3-RSIS(u).

5. Repeat the above process for other possible R.

In addition, we use the following notation

3-RSIS = ∪u∈Vint3-RSIS(u)

3-RSIS is called the 3-RSI neighborhood of the rooted binary tree S, and |3-RSIS | =
∑

n−1O(1) =

O(n).
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Problem 7.4.1. (RF local search)

Instance: A profile G and a median tree S for G.

Find: S′ = argmin
S′∈3-RSIS

RF (G, S′)

We introduced Algorithm 7 that solves the RF local search problem in linear time to the

size of the starting clique that is defined by the initial median tree.

Algorithm 7 3-RSI(G, S)
Instance: A profile G and a median tree S for G.
Find: S′ = argmin

S′∈3-RSIS
RF (G, S′)

1: S′ = S

2: for all u ∈ Vint(S) do
3: construct a clique Q that defines S′ (S′ → Q)
4: for 3 pairs of u’ adjacent v, w do
5: R = {u, v, w}
6: remove leaf vertices from R

7: if |R| ≥ 2 then
8: L = ∪x∈RCS(x)

9: D = ∪x∈RChS(x) \R for internal ChS(x)

10: construct a compatibility graph CG′

with rooted splits (A,B) such that
A ∪B ⊆ L and ∃x ∈ D, CS(x) ( A ∪B

11: set weights of rooted splits in CG′,
that is Winc(z),∀z ∈ V (CG′)

12: Find |R|-clique Q′ as to minimize Winc(Q′)
13: if Winc(Q′) < Winc(πS(R)) then
14: replace πS(R) in Q with Q′
15: build S′ that is defined by Q (Q → S′)
16: end if
17: end if
18: end for
19: end for
20: return S′

Theorem 7.4.1. Algorithm 7 is correct, and runs in O(kn) time where n = |L(G)|, and k is

the number of trees in G.

Proof. For the correctness, observe that the condition of rooted splits in line 10 (A∪B ⊆ L and

∃x ∈ D, CS(x) ( A ∪ B). This condition grantees that any rooted splits in CG′ is compatible

with all rooted splits in Q \ πS(R). There are two cases of vertex y ∈ Vint(S) \ R. That is (i)
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x ≤S y or y ≤S x ∀x ∈ R, and (ii) others. Hence, (i) satisfies contains, and (ii) satisfies disjoint.

Furthermore, the number of CG′ is fixed by this condition. Therefore, the algorithm requires

O(kn) time to repeat 3-RSI based local search for all internal vertices.

Algorithm 7 can also be applied to the deep coalescence, gene duplication, and gene duplication-

loss problems by adapting the different weighting functions corresponding to these problems.

The weighting function of the deep coalescence problem was introduced by Than and Nakhleh [Than

and Nakhleh (2009b)], and the functions of the gene duplication and gene duplication-loss prob-

lems were proposed by Bayzid et al. (2013).

7.5 Experiments

We evaluate the performance of our clique-based heuristic, called 3-RSI (see Algorithm 7),

for the RF median tree problem. As a preliminary step, a median tree is computed by the

RF heuristic RF-SPR from Bansal et al. (2010b) that is then used as the initial input for our

3-RSI heuristic. Throughout the experiments, RF-SPR median tree denotes the initial median

tree, and 3-RSI median tree denotes the output tree of our 3-RSI local search heuristic. We

compared the RF distances between 3-RSI median trees and RF-SPR median trees by using

published empirical data sets and simulated data sets. For statistical analyses, the Wilcoxon

signed-rank test (non-parametric test) was used to compare the median value differences of RF

distances between matched pairs of RF-SPR and 3-RSI median trees to alleviate the normal

distribution assumption. All of our experiments were performed on an Intel® Core™ i7 860

2.80GHz workstation with 8GB RAM.

7.5.1 Empirical study

Published chloroplast 5S ribosomal RNA data set of 118 total taxa from the comparative

RNA web site [Cannone et al. (2002)] is used for the empirical study. 100 input trees are

inferred from the data set using the maximum parsimony approach that is implemented in

Parsimonator [Stamatakis (2014)]. We compared the performance between RF-SPR and 3-RSI

median trees by executing both heuristics 1, 000 times for the data set.
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Figure 7.6: The box plot of RF (G,RF-SPR) and RF (G, 3-RSI), and the bar chart of average running
time. The mean value is denoted by the symbol ⊕, the median value is represented by the
band inside the box, and the first and third quartiles are represented by the bottom and
top of a box respectively.

Figure 7.6 depicts RF distances of 3-RSI and RF-SPR median trees. RF distances of 3-RSI

median trees for both data sets were significantly lower than the ones of RF-SPR median trees

(p-value < 0.05). The average running time of 3-RSI is 259 seconds and that of RS-SPR is 158

seconds. In addition, 95% confidence intervals (CI) for median value differences of the Wilcoxon

signed-rank test are summarized in Table 7.1.

7.5.2 Simulated study

We used the exact algorithm [Chang et al. (2013)] for the RF median tree problem to

analyze optimality of our 3-RSI heuristic. Due to the fact that the Pareto property for clusters

is satisfied for the RF median tree problem [Bryant (2003)], this problem can be solved exactly

by using the strict consensus approach for profiles of complete rooted binary gene trees (i.e.,

trees with the same label set) analogous to the deep coalescence [Lin et al. (2011)] and the gene

duplication problem [Moon et al. (2016)].

The strict consensus approach is described as follows. A given profile is divided into an

equivalent set of its subprofiles based on the strict consensus tree of the given profile. Then,

subsolutions are computed by solving the subpropiles and the solution is obtained by refining

the strict consensus tree by the subsolutions [Moon et al. (2016)]. This approach is limited by

the maximum out-degree (kmax) of the strict consensus tree of the given profile. We restricted

the maximum out-degree (kmax = 10) to compute the exact solution in a reasonable time.
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For the strict consensus approach, the guidance-trees were created as b-ary trees with depth

d, for the number of taxa bd = {82, 92, 102, 53}. For each guidance-tree, a profile G consisting

of 100 rooted binary trees was computed, where each tree in the profile is a random refinement

of the guidance tree. With this profile G, we compared the RF distances of RF-SPR and 3-RSI

median trees. The described procedure is repeated 1, 000 times for each number of taxa.

Figure 7.7 depicts RF distances of 3-RSI, RF-SRP, and the exact solution median trees. RF

distances of 3-RSI median trees for all numbers of taxa were significantly lower than the ones

of RF-SPR median trees (p-value < 0.05). In detail, 95% confidence intervals (CI) for median

value differences of the Wilcoxon signed-rank test are summarized in Table 7.1. Figure 7.7 also

shows that 3-RSI has a longer average running time compared to RF-SPR (about 2-3 times)

for all number of taxa.

Table 7.1: Median value of RF scores and 95% confidence intervals (CI) for median value difference of
the Wilcoxon signed-rank test.

Median of RF 95% CI
Taxa RF-SPR 3-RSI

Chloroplast 8230 8226 (5.0, 6.0)
64(= 82) 9744 9740 (2.0, 3.0)
81(= 92) 12828 12826 (1.0, 2.0)

100(= 102) 16292 16288 (5.0, 5.0)
125(= 53) 15126 15124 (3.0, 3.0)

Figure 7.8 depicts distributions of improvement ratios of 3-RSI median trees compared to

RF-SPR median trees. An improvement ratio (0 ∼ 100%) is calculated by following formula:

RF (G,RF-SPR)−RF (G, 3-RSI)
RF (G,RF-SPR)−RF (G,Exact Solution)

(%)

In conclusion, 100% of the ratio means that 3-RSI heuristic improves RF-SPR median tree

optimally.

7.6 Conclusion

Inferring large-scale phylogenetic trees accurately is one of the grand challenges in compu-

tational biology. Addressing this challenge, standard local search heuristics for the NP-hard RF
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Figure 7.7: Box plots of RF (G,RF-SPR), RF (G, 3-RSI), and RF (G,Exact Solution). The mean, me-
dian, first quartile, and third quartile are represented as in Figure 7.6.
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Figure 7.8: Distributions of improvement ratios of 3-RSI median tree compared to RF-SPR me-
dian tree. An improvement ratio (0 ∼ 100%) is calculated by dividing a difference be-
tween RF (G,RF-SPR) and RF (G, 3-RSI) by a difference between RF (G,RF-SPR) and
RF (G,Exact Solution). Therefore, 100% of the ratio means that 3-RSI heuristic improves
RF-SPR median tree optimally.

median tree problem have provided credible results. However, our studies using exact solutions

for large-scale trees have shown that these heuristics can have a significant inaccuracy (see Fig-

ure 7.8). Consequently, this work describes a new RF heuristic that is fundamentally different

from current standard heuristics for the RF median tree problem.

To develop this new RF heuristic, we introduce a graph-theoretic formulation of the RF

median tree problem where optimal trees relate to minimum vertex weight cliques in a compati-

bility graph. Therefore, our clique-based heuristic is searching for optimal cliques in this graph,

in contrast to standard local search heuristics that search the space of all candidate median

trees. As we demonstrate, while the clique-based heuristic does not provide exact results, it

improves significantly on the RF median tree estimates resulting from the standard RF heuris-

tics. Clearly, our clique-based heuristic can only improve on the standard heuristics, as it is

initialized with the RF median tree estimates provided by the standard heuristics.

Investigating how the clique-based heuristic and standard local search heuristics may relate,

we found that the clique-based heuristic can be equivalently expressed as a standard local search
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heuristic albeit using a distinct tree edit operation that we introduce. This result also shows that

our clique-based heuristic has the ability to improve on RF median tree estimated of standard

local searches.



www.manaraa.com

72

CHAPTER 8. CLUSTER MATCHING DISTANCE

We propose the first cluster matching distance between two rooted phylogenetic trees. We

define a complete weighted bipartite graph G = (X,Y,E) from two rooted trees T1 and T2 where

every cluster in T1 and T2 is represented by a node in X and Y . The weight of an each edge

e = {u, v} is defined as the cardinality of the symmetry difference between the clusters u and v.

Our cluster matching distance between trees T1 and T2 is the weight of the minumum-weight

perfect matching in the complete weight bipartite graph G.

We demonstrate that our new distance measure induces a metric on the spaces of trees. In

addition, we show the bound on the diameter with respect to the distance measure and the

bound on the change in the distance measure caused by a single tree edit operations such as

rNNI, rSPR, and rTBR.

8.1 Cluster Matching Distance

Definition 8.1.1. (Robinson-Foulds Distance) Given two trees, T1 and T2 on the same set of

leaves,

RF (T1, T2) =
1

2

(
(‖H(T1) \ H(T2)|) + (|H(T2) \ H(T1)|)

)
.

Given two trees, T1 and T2 on the same set of leaves, we define a complete weighted bipartite

graph G = (Vint(T1) ∪ Vint(T2), E). We denote this complete bipartite graph by B(T1, T2).

Definition 8.1.2. (Cluster Matching Distance) We set the weight of each edge e = {u, v} in

B(T1, T2) to

W (u, v) = |CT1(u)	 CT2(v)|

= |
(
CT1(u) \ CT2(v)

)
∪
(
CT2(v) \ CT1(u)

)
|
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The cluster matching distance CM(T1, T2) between T1 and T2 is the weight of the minimum

weight perfect matching in B(T1, T2).

Let n be the number of nodes in B(T1, T2), i.e., n = |V
(
B(T1, T2)

)
|. Computing the weights

of edges in B(T1, T2) requires O(n3) time by using vector representation of clusters, and the

minimum-weight perfect matching problem can be solved by using Kuhn-Munkres algorithm,

which is also asymptotically bounded by O(n3) Kuhn (1955); Munkres (1957).

8.1.1 A new metric space

Lemma 8.1.1. The cluster matching distance is a metric. For any rooted trees Ti, Tj, and Tk

on same leaves,

1. CM(Ti, Tj) ≥ 0

2. CM(Ti, Tj) = 0 if and only if Ti = Tj

3. CM(Ti, Tj) = CM(Tj , Ti)

4. CM(Ti, Tk) ≤ CM(Ti, Tj) + CM(Tj , Tk)

Proof. Properties 1, 2, and 3 follow directly from Definition 8.1.2. Suppose that Mij and

Mjk are the minimum weight perfect matching in B(Ti, Tj) and B(Tj , Tk). Now, construct a

matching Mik in B(Ti, Tk) such that Mik = {(u,w)|(u, v) ∈Mij ∧ (v, w) ∈Mjk}. For u, v, and

w, W (u,w) ≤W (u, v) +W (v, w). We have

CM(Ti, Tk) ≤
∑

(u,w)∈Mik

W (u,w)

≤
∑

(u,v)∈Mij ,(v,w)∈Mjk

(W (u, v) +W (v, w))

=
∑

(u,v)∈Mij

W (u, v) +
∑

(v,w)∈Mjk

W (v, w)

= CM(Ti, Tj) + CM(Tj , Tk)
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Definition 8.1.3. Let T (n) be the space of all rooted binary trees on n leaves. The diameter

∆ of T (n) with respect to a distance metric D on T (n) is defined as

∆(T (n), D) = max{D(T1, T2)|T1, T2 ∈ T (n)}

Figure 8.1: An example for two trees T1 and T2 on n leaves such that RF (T1, T2) = n− 2.

Theorem 8.1.1.

∆(T (n), RF ) = n− 2

∆(T (n), CM) = Θ(n2)

Proof. Consider two trees T1 and T2 as shown in Fig. 8.1. The leaves in T1 are ordered as

(1, 2, · · · , n) and the leaves in T2 are ordered as (n, n−1, · · · , 1). For the RF distance, H(T1) ={
{1, 2}, {1, 2, 3}, · · · , {1, 2, · · · , n−1, n}

}
and H(T2) =

{
{n, n−1}, {n, n−1, n−2}, · · · , {n, n−

1, · · · , 2, 1}
}
. Hence, RF (T1, T2) = 1

2

(
|H(T1)|+ |H(T2)|

)
= n− 2.

8.1.2 Gradients to the tree edit operations

For the CM distance, the cluster of the root nodes are identical to {1, · · · , n}, thus the

weight between the root nodes is always 0. Let the node of the cluster {n, n − 1, · · · , 34n} in

T2 be vl, then W (u, vl) >
n
4 for all u ∈ V (T1) \ {r(T1)}. Similarly, let the node of the cluster

{n, n − 1, · · · , n4 } in T2 be vu, then W (u, vu) ≥ n
4 for all u ∈ V (T1) \ {r(T1)}. There are n

2

nodes in V (T2) whose weight are greater than n
4 with any non-root nodes in V (T1) between ul

and vu, therefore any matching in B(T1, T2) have a weight at least n
4 ×

n
2 = Ω(n2). For the

upper bound, consider two arbitrary trees T1 and T2 on n leaves. For u ∈ V (T1) \ {r(T1)}, in

B(T1, T2), W (u, v) ≤ n− 3 for all v ∈ V (T2) \ {r(T2)}. Hence a matching in B(T1, T2) can have

a weight at most O(n). Therefore, ∆(T (n), CM) = Θ(n2).
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Let T1 be a rooted binary tree and φ(T1) be the set of trees derived by applying operation

φ to a tree T1, where φ be one of rooted nearest neighbor interchange (rNNI), rooted subtree

prune and regraft (rSPR), or rooted tree bisection and regraft (rTBR).

• rNNI: Let T2 ∈ rNNI(T1). An internal vertex u of a rooted binary tree T1 has two

incident edges that connects its children l and r. A rooted binary tree T2 is obtained from

T1 by deleting e = {u, l} (or e′ = {u, r}), adding the edge between l (or r) and the vertex

subdivides the edge that is incident with PaT1(u) and u’s sibling, and then suppressing

any degree-two vertices Moore et al. (1973); Robinson (1971).

• rSPR: Let T2 ∈ rSPR(T1). e = {u, v} and u ≤T1 v. A rooted binary tree T2 is obtained

from T1 by deleting e, adding the edge between u and the vertex that subdivides the edge

of T1 \ e, and then suppressing any degree-two vertices Allen and Steel (2001); Bordewich

and Semple (2005); Swofford and Olsen (1990).

• rTBR: Let T2 ∈ rTBR(T1). Analogous to rSPR, a rooted binary tree T2 is obtained from

T1 by deleting e, adding an edge between vertices such that each of the vertices subdivides

the edge of one and the other component of T1 \ e, and then suppressing any degree-two

vertices Allen and Steel (2001); Chen et al. (2006); Swofford and Olsen (1990).

Definition 8.1.4. The gradient of a tree edit operation φ with respect to a distance metric D

on T (n) is defined as

G(T (n), D, φ) = max{D(T1, T2)|T1, T2 ∈ T (n) ∧ T2 ∈ φ(T1)}

Figure 8.2: An example of rNNI operation. T1 and T2 are rooted binary trees, and T1 ∈ rNNI(T2)
and T2 ∈ rNNI(T1). CT1

(u1) = {1, · · · , k − 2, k − 1}, CT1
(u2) = {1, · · · , k − 2, k − 1, k},

CT2(v1) = {k − 1, k}, and CT2(v2) = {1, · · · , k − 2} where 3 ≤ k ≤ n.
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Theorem 8.1.2.

G(T (n), RF, rNNI) = 1

G(T (n), CM, rNNI) = Θ(n)

Proof. Consider two trees T1 and T2 as shown in Fig. 8.2. Suppose that T1 in Fig. 8.2 is a

caterpillar tree, CT1(u1) = {1, · · · , k − 2, k − 1}, CT1(u2) = {1, · · · , k − 2, k − 1, k}, CT2(v1) =

{k−1, k}, and CT2(v2) = {1, · · · , k−2, k−1, k} where 3 ≤ k ≤ n. The rNNI operation replaces

the cluster CT1(u1) = {1, · · · , k − 2, k − 1} in H(T1) with the cluster CT2(v1) = {k − 1, k} in

H(T2). Hence, RF (T1, T2) = G(T (n), RF,NNI) = 1.

For the CM distance, in B(T1, T2), W (u2, v2) = 0 because CT1(u2) = CT2(v2) = {1, · · · , k −

2, k − 1, k}. The edge weight between u1 and v1 in B(T1, T2), W (u1, v1) is k − 1 because

|CT1(u1) 	 CT2(v1)| = |{1, · · · , k − 2, k − 1} 	 {k − 1, k}| = |{1, · · · , k − 2} ∪ {k}| = k − 1.

Therefore, G(T (n), CM, rNNI) = Θ(n) because 3 ≤ k ≤ n.

Figure 8.3: An example of rSPR operation such that RF (T1, T2) = n−2. T1 and T2 are rooted binary
trees, and T1 ∈ rSPR(T2) and T2 ∈ rSPR(T1).

Theorem 8.1.3.

G(T (n), RF, rSPR) = n− 2

G(T (n), CM, rSPR) = Θ(n2)

Proof. Consider two trees T1 and T2 as shown in Fig. 8.3. The bound for the RF distance is

derived by prune one leaf (1) at one end of T1 and regraft it to the other end (n) of the tree.

Hence, G(T (n), RF, rSPR) = n− 2.
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For the CM distance, consider two trees T1 and T2 as shown in Fig. 8.4. By the rSPR

operation from T1 to T2, the edge {uk, uk+1} is deleted, and the subtree T1(uk) is grafted between

uk and uk+1 where 1 < l < k < n. Note that CT2(vm) = {l+ 1, · · · ,m} for vl+1 <T2 vm ≤T2 vk.

Suppose that n
4 ≤ l and

3
4n ≤ k, then in B(T1, T2),

W (u, vm) =



m u ≤T1 ul

m− 1 u = ul+1

l + δ otherwise (δ > 0)

W (u, vm) > n
4 for vl+1 <T2 vm ≤T2 vk because m > l + 1 and there are at least n

2 such a node

vm. Hence, any matching in B(T1, T2) have a weight at least n
4 ×

n
2 = Ω(n2). The upper bound

is trivial by Theorem 8.1.1.

Figure 8.4: An example of rSPR operation such that CM(T1, T2) = Θ(n2). T1 and T2 are rooted
binary trees, and T1 ∈ rSPR(T2) and T2 ∈ rSPR(T1).

Theorem 8.1.4.

G(T (n), RS, rTBR) = n− 2

G(T (n), RSM, rTBR) = Θ(n2)

Proof. Since rSPR is a special case of rTBR, the results follow from Theorem 8.1.3.

8.2 Experiments

We demonstrate the characteristics of the RF distance and the CM distance with the sim-

ulated data sets. First, we show the distributions of the RF distance and the CM distance
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between a pair of randomly generated binary trees based on the two different models. Sec-

ond, we compare how the RF distance and the CM distance are correlated with the number of

consecutive tree edit operations that are rNNI, rSPR, and rTBR edit operations.

All experiments were performed on a workstation with an Intel® Xeon® CPU E7-8837

@2.66GHz with 128GB RAM.

8.2.1 Distribution of the tree distance metrics

We demonstrate the distributions of the RF distance and the CM distance between a pair

of random binary trees. To generate random binary trees, we use the Yule-Harding Harding

(1971) model and the birth-death process Arvestad et al. (2004) model.

8.2.1.1 Yule-Harding Model

Data set. We produced rooted profiles Pn and Qn where n ∈ {100, 1000}. The profile Pn (and

also Qn) consists of 100, 000 random binary trees, and each random tree was generated by the

following procedure: i) we started from a list of n single-node trees representing leaves. ii) we

removed two randomly chosen trees from the list and made their roots as the children of the

root of a new tree. iii) we added the new tree to the list. iv) we repeated this process until the

list contains only one tree Górecki and Eulenstein (2015). It can be shown that such a process

is equivalent to the classical Yule-Harding model for rooted tree shapes Betkier et al. (2015).

Experiment Setting. For the profiles Pn = {p1, · · · , p100000} and Qn = {q1, · · · , q100000}, we

computed the RF distance and the CM distance between pi and qj for all i = j and i, j ∈

{1, · · · , 100000}.

Table 8.1: Descriptive statistics of the RF distance and the CM distance between a pair of randomly
generated binary trees (Yule-Harding model) on 100 and 1, 000 leaves.

Distance Leaves Mean SD Min Max Range
RF 100 97.77 0.48 93 98 5
CM 100 891.6 38.28 760 1123 363
RF 1000 997.78 0.47 994 998 4
CM 1000 17659.27 423.3 16253 20031 3778
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Figure 8.5: Distribution of the RF distance and the CM distance between a pair of randomly generated
binary trees (Yule-Harding model) on 100 and 1, 000 leaves.

Results and Discussion. Tab. 8.1 summarizes the descriptive statistics and Fig. 8.5 shows the

distributions of the RF distance and the CM distance between a pair of randomly generated

trees. The distribution of the RF distance is extremely skewed left, and hence their range is

very narrow and also their minimum value and mean value are very close to their theoretical

maximum value. In addition, the standard deviation and the range of the RF distance are

similar between 100 and 1, 000 leaves. It tells us that they are not proportional to the number

of leaves. On the other hand, the CM distances are more broadly distributed in the form of a

bell-shape and shows a wider ranges for both 100 and 1, 000 leaves.



www.manaraa.com

80

8.2.1.2 Birth-Death Process Model

Data set. Similar to the Yule-Harding model, we produced rooted profiles Pn and Qn where

n ∈ {100, 1000}. The profile Pn (and also Qn) consists of 100, 000 random binary trees, and

we used the software DendroPy version 3.10 Sukumaran and Holder (2010) for generating a

birth-deadth process simulated tree (birth rate=0.1, death rate=0).

Figure 8.6: Distribution of the RF distance and the CM distance between a pair of randomly generated
binary trees (birth-death process model) on 100 and 1, 000 leaves.

Experiment Setting. For the profiles Pn = {p1, · · · , p100000} and Qn = {q1, · · · , q100000}, we

computed the RF distance and the CM distance between pi and qj for all i = j and i, j ∈

{1, · · · , 100000}.

Results and Discussion. Tab. 8.2 summarizes the descriptive statistics and Fig. 8.6 shows the

distributions of the RF distance and the CM distance between a pair of randomly generated
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Table 8.2: Descriptive statistics of the RF distance and the CM distance between a pair of randomly
generated binary trees (birth-death process model) on 100 and 1, 000 leaves.

Distance Leaves Mean SD Min Max Range
RF 100 81.37 4.16 61 96 35
CM 100 460.52 59.41 249 851 602
RF 1000 837.8 12.89 788 883 95
CM 1000 7705.55 623.8 5257 11327 6070

trees. Unlike the Yule-Harding model, the distributions of the RF distance and the CM distance

are both in the form of a bell-shape. However, the distribution of the CM distance shows a

wider ranges than the one of the RF distance for both 100 and 1, 000 leaves. To show the

relative standard deviation, we computed the coefficient of variation cv = σ
µ where σ is the

standard deviation and µ is the mean value. It follows that cv of the CM distance is greater

than the cv of RF distance for both 100 and 1, 000 leaves.

Table 8.3: Coefficient of variation of the RF distance and the CM distance between a pair of randomly
generated binary trees (birth-death process model) on 100 and 1, 000 leaves.

Distance Leaves Coefficient of variation, cv = σ
µ

RF 100 4.16
81.37 = 0.051

CM 100 59.41
460.52 = 0.129

RF 1000 12.89
837.8 = 0.015

CM 1000 623.8
7705.55 = 0.080

8.2.2 Tree distance metrics under tree editing operations

We demonstrate how the RF distance and the CM distance correlate with the number of

consecutive rNNI, rSPR, and rTBR edit operations. From the result of the section 8.2.1, the

RF distance is expected to be saturated faster than the CM distance by repeating the number

of tree edit operations.

Data set. We created a rooted profile P consisting of 1, 000 random binary trees on 500

leaves, and each tree in P was simulated by Yule-Harding model that was explained in the

section 8.2.1.1.
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Figure 8.7: The average RF distance and CM distance of 1, 000 trees on 500 leaves as a function of
the number of consecutive rNNI operations.

Experiment Setting. We repeated the tree edit operations and measured the pairwise distances

by the following procedure:

1. We produced the profile Qnni, Qspr, and Qtbr for each rNNI, rSPR, and rTBR tree edit

operation. (Let d ∈ {nni, spr, tbr}.)

2. The initial Qd = {q1, · · · , q1000} is identical to P = {p1, · · · , p1000}.

3. We applied the randomized tree edit operation d to all trees in Qd, and the edited trees

are stored in Qd.

4. We measured the RF distance and the CM distance between pi and qj for all i = j and

i ∈ {1, · · · , 1000}.

5. We averaged the measured RF distances and CM distances.

6. We repeated the process from the step 2. to the step 5. for 2, 000 times for the rNNI

operation and 500 times for the other operations.

For a given tree T , we applied the randomized tree edit operations by the following method:
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Figure 8.8: The average RF distance and CM distance of 1, 000 trees on 500 leaves as a function of
the number of consecutive rSPR operations.

• rNNI: Choose an internal edge e = {u, v} ∈ E(T ) (u ≤T1 v) arbitrary and delete e. Add

the edge between u and the vertex subdivides the edge that is incident with PaT (v) and

v’s sibling.

• rSPR: Choose an edge e = {u, v} ∈ E(T ) (u ≤T1 v) arbitrary and delete e. Add the edge

between u and the vertex that subdivides the randomly chosen edge of T \ e.

• rTBR: Choose an edge e arbitrary and delete e. Add an edge between vertices such that

each of the vertices subdivides the randomly chosen edge of one and the other component

of T \ e.

Results and Discussion. Fig. 8.7 shows the average RF distance and CM distance between the

initial tree and rNNI operation applied trees. The gradient of the RF distance curve is very steep

between 0 ∼ 1, 200 operations and the inclination of the curve is gradual after 1, 600 operations.

However, the CM distance after 1, 600 operations is still in an increasing trend. Fig. 8.8 shows

the average RF distance and CM distance between the initial tree and rSPR operation applied

trees. While the gradient of the RF distance curve is gradual after 400 operations, but the

gradient of the CM distance is in an increasing trend. Fig. 8.9 shows the average RF distance

and CM distance between the initial tree and rTBR operation applied trees. Unlike the rSPR
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Figure 8.9: The average RF distance and CM distance of 1, 000 trees on 500 leaves as a function of
the number of consecutive rTBR operations.

operation, the gradients of the RF distance and the CM distance curve are both steep between

0 ∼ 200 operations, and they are gradual after 350 operations.

8.3 Conclusion

While the Robinson-Foulds distance measure has been used widely to compare phylogenetics

trees in computational biology, the distance is poorly distributed, shows insufficient discrimina-

tion, and is too sensitive to tree edit operations. To overcome these shortcomings, we introduced

a new tree metric.

Our new distance measure is a metric on the space of rooted trees, and it can be computed

in polynomial time in contrast to edit distances under tree edit operations. Throughout the

simulated experiments, we demonstrated that this new metric is distributed much more broadly

and less biased, and also the metric is less sensitive to a tree edit operation than the Robinson-

Fould metric.
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CHAPTER 9. HIGHLY BI-CONNECTED SUBGRAPH

A key idea of graph clustering is to identify densely connected subgraphs as clusters that

have many interactions within themselves and few interactions outside of themselves in the

graph [Hüffner et al. (2014)]. A study by Pržulj et al. (2004) determines clusters, which could

indicate protein functions, by using the HCS algorithm in PPI networks. A highly connected

subgraph is defined as a subgraph with n vertices such that more than n
2 of its edges must

be removed in order to disconnect the subgraph. The concept of a highly connected graph is

very similar to that of a quasi-clique (i.e., a graph where every vertex has a degree at least

n−1
2 [Hüffner et al. (2014)]). Hartuv and Shamir [Hartuv and Shamir (2000)] proved that

the HCS algorithm, which is based on the n
2 connectivity requirement, produces clusters with

good homogeneity and separation properties [Pržulj et al. (2004)]. However, the concept of

highly connected subgraphs is not applicable to bipartite graphs, since they do not contain such

subgraphs.

Bipartite graphs are frequently used to represent biological networks. Bicliques in bipartite

PPI networks play an important role in identifying functional protein groups [Wang (2013)].

A study by Andreopoulos et al. (2007) identifies locally significant proteins, that mediate the

function of proteins, by exploring bicliques in PPI networks. However, a biclique is too strin-

gent for identifying the functional groups [Geva and Sharan (2011)]. A quasi-biclique allows

a specified number of missing edges in a biclique [Wang (2013)]. Bu et al. (2003) show that

quasi-bicliques consist of relevant protein functions and also propose a method to predict protein

functions based on the classification of known proteins within the quasi-bicliques. Although a

quasi-biclique is less stringent, it allows for the inclusion of proteins that interact with few other

proteins in the quasi-biclique [Chang et al. (2012)].
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We propose the HBC problem to identify highly bi-connected subgraphs in bipartite net-

works. Essential for this work is Theorem 9.1.3 that describes a highly bi-connected graph

G = (U, V,E) equivalently as a graph where the minimum degree is larger than 1
2 of the mini-

mum cardinality of the vertex sets U and V . Using this theorem we show the NP-hardness of

the HBC problem by a polynomial time reduction from the exact 3-sets cover problem. Further,

Theorem 9.1.3 is also used to describe an initial IQP formulation for the HBC problem that

contains quadratic constraints. This initial IP is then transformed into an ILP by replacing

the quadratic constraints with linear ones using simplified variables by adapting implication

rules. Our heuristic follows a seed based approach, where seeds are expanded to highly bi-

connected subgraphs with the maximum number of vertices, and resulting subgraphs with the

largest number of vertices are returned. Finally, we demonstrate the performance of our heuris-

tic algorithm by comparing its results with exact ILP solutions for small-scale instances of the

HBC problem, and through an experimental study that annotates protein function by analyz-

ing a bipartite protein-function network built from data provided by the UniProt-GOA human

database [Consortium et al. (2014)].

9.1 Highly Bi-Connected Subgraph Problem

Definition 9.1.1 (Highly Connected Subgraph). A graph G is called highly connected if

λ(G) > |V |
2 . An induced subgraph G[V ′] (where V ′ ⊆ V ) that is highly connected is called

a highly connected subgraph(HCS).

Theorem 9.1.1. There is no highly connected bipartite graph.

Proof. Let G = (X ∪ Y,E) be a bipartite graph and highly connected. Then |X|+|Y |
2 ≥

min(|X|, |Y |) ≥ δ(G) ≥ λ(G) > |X|+|Y |
2 , which is a contradiction.

Definition 9.1.2 (Highly Bi-Connected Subgraph). Let G = (X∪Y,E) be a bipartite graph. A

bipartite graph G is called highly bi-connected if λ(G) > 1
2 min(|X|, |Y |). An induced bipartite

subgraph G[X ′ ∪ Y ′], (X ′ ⊆ Y, Y ′ ⊆ Y ) is a highly bi-connected subgraph(HBCS) if G[X ′ ∪ Y ′]

is highly bi-connected.
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Theorem 9.1.2. Let G = (X ∪ Y,E) be a bipartite graph. If λ(G) > 1
2 min(|X|, |Y |) and

|X| ≥ |Y |, then dst(u, v) = 2 for all distinct u, v ∈ X.

Proof. d(u), d(v) ≥ δ(G) ≥ λ(G) > 1
2 min(|X|, |Y |) = |Y |

2 . There exists at least one vertex

z ∈ Y such that P = uzv is a path because |NG(u) ∩NG(v)| ≥ 1.

Corollary 9.1.1. (Dankelmann and Volkmann, 1995, page 273) Let G = (X ∪ Y,E) be a

bipartite graph. If dst(u, v) = 2 for all distinct u, v ∈ X, then λ(G) = δ(G).

Theorem 9.1.3. Let G = (X ∪ Y,E) be a bipartite graph. If δ(G) > 1
2 min(|X|, |Y |), then

δ(G) = λ(G).

Proof. Supposed that |X| ≥ |Y |, and u, v ∈ X. d(u), d(v) ≥ δ(G) > |Y |
2 . There exists at least

one vertex z ∈ Y such that P = uzv is a path because |NG(u)∩NG(v)| ≥ 1. Hence, d(u, v) = 2

and δ(G) = λ(G) by Theorem 9.1.1.

Corollary 9.1.2. A bipartite graph G is highly bi-connected if δ(G) > 1
2 min(|X|, |Y |), δ(G) ≥

d12 min(|X|, |Y |)e, or 2δ(G) ≥ min(|X|, |Y |) + 1.

Problem 9.1.1 (HBCS Problem).

Instance: A undirected bipartite graph G = (X ∪ Y,E) and positive integer k.

Question: Is there a vertex set X ′ ∪ Y ′ such that |X ′|+ |Y ′| = k and G′ = G[X ′ ∪ Y ′] is highly

bi-connected?

Theorem 9.1.4. HBCS problem is NP-hard.

Proof. The exact cover by 3-sets (X3C) problem is known to be NP-hard [Karp (1972)]. The

reduction algorithm takes an instance 〈S, T 〉 of the X3C problem where S is a finite set of

3k elements and T is a collection of l triples (three-element subsets of S). Without loss of

generality, we assume that k < l < 2k.

Step 1. A bipartite graph GA = (XA ∪ YA, EA) is created by linking an element si ∈ S with

xi ∈ XA and tj ∈ T with yj ∈ YA. An edge (xi, yj) ∈ EA is established iff si /∈ tj . Note that

|XA| = 3k, |YA| = l, and d(yj , XA) = 3k − 3.
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Step 2. A bipartite graph GB = (XB ∪ YB, EB) is constructed as XB = Xa ∪ Xb ∪Xc where

|Xa| = |Xb| = 3k, |Xc| = 6 and YB = Ya ∪ Yb ∪ Yc where |Ya| = |Yb| = l, |Yc| = 3. We set edges

to make that G[Xa ∪ Ya] and G[Xb ∪ Yb] are equivalent with GA. Each vertex in Xc is adjacent

to all vertices in Ya ∪ Yb, and similarly, each vertex in Yc is adjacent to all vertices in Xa ∪Xb.

Note that |XB| = 6k + 6 and |YB| = 2l + 3.

Step 3. A bipartite graph G = (X∪Y,E) is built as X = X1∪X2∪· · ·∪X3k and Y = YB where

|X1| = |X2| = · · · = |X3k| = 6k + 6. We connect edges to achieve that G[Xi ∪ Y ] (1 ≤ i ≤ 3k)

is identical to GB. Note that |X| = 3k(6k + 6) and |Y | = 2l + 3.

These steps can be done in polynomial time. The output of the reduction algorithm is an

instance 〈G, 18k2 + 20k + 3〉 of the HBCS problem. Suppose that 〈S, T 〉 has a perfect cover

T ′ ⊆ T where |T ′| = k. We claim that G has a HBCS G′ = G[X ′ ∪ Y ′] such that X ′ = X,

Y ′ = Y ′a ∪ Y ′b ∪ Yc where Y ′a and Y ′b contain k vertices associated with k triples in T ′. In the

induced bipartite G′, d(x, Y ′) ≥ (k − 1) + 3 = k + 2 > 1
2 min(|X ′|, |Y ′|) = 1

2 |Y
′| = 1

2(2k + 3) =

k + 3
2 (x ∈ X ′) and d(y,X ′) ≥ 3k(3k + 3) > k + 3

2 (y ∈ Y ′). Thus, δ(G′) > 1
2 min(|X ′|, |Y ′|)

and |X ′|+ |Y ′| = 3k(6k + 6) + (2k + 3) = 18k2 + 20k + 3.

Conversely, Suppose that G has a HBCS G′ = G[X ′∪Y ′] where |X ′|+ |Y ′| = 18k2+20k+3.

We claim that 〈S, T 〉 has a perfect cover T ′ ⊆ T such that X ′ = X, Y ′ = Y ′a ∪ Y ′b ∪ Yc where Y ′a

and Y ′b contain k vertices associated with k triples in T ′.

First, we prove that |Y ′a| + |Y ′b | = 2k. If |Y ′a| + |Y ′b | < 2k, then |X| > 3k(6k + 6). This is a

contradiction. If |Y ′a| + |Y ′b | > 2k, then there is a positive integer p such that 2k + (2p − 1) ≤

|Y ′a| + |Y ′b | ≤ 2k + 2p. We assume that |Y ′a| ≤ |Y ′b |, hence |Y ′a| ≤ k + p. Now, we consider

X ′i,a = Xi,a ∩ X ′ and prove X ′i,a ( Xi,a. Suppose that X ′i,a = Xi,a. For a vertex x ∈ X ′i,a,

d(x, Y ′) > 1
2 |Y

′| ≥ 1
2(2k + 2p − 1 + 3) = k + p + 1. By the construction, d(x, Y ′a) > k + p − 2

because d(x, Y ′b ) = 0 and d(x, Y ′c ) = 3. The inequality can be written d(x, Y ′a) ≥ k+ p− 1 since

a degree is an integer. The number of edges between all X ′i,a and Y ′a is at least 3k(k+ p− 1) =

3k2 + 3pk − 3k. For a vertex y ∈ Ya, d(y,X ′i,a) = 3k − 3. The number of edges between all

X ′i,a and Y ′a is at most (k + p)(3k − 3) = 3k2 + 3pk − 3k − 3p. There is no integer e such that

3k2 + 3pk− 3k ≤ e ≤ 3k2 + 3pk− 3k− 3p for a positive integer p. Thus, X ′i,a ⊂ Xi,a and there

are at least 3k vertices in X not in X ′ since there is at least one vertex in Xi,a not in X ′i,a.
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|X ′| ≤ 3k(6k+ 6)−3k = 18k2 + 15k, |Y ′| < 4k+ 3 (∵ l < 2k), and |X ′|+ |Y ′| < 18k2 + 19k+ 3.

This is a contradiction, hence |Y ′a|+ |Y ′b | = 2k.

Second, we prove that |Y ′a| = |Y ′b | = k. We assume that |Y ′a| < k and X ′i,a = Xi,a. For a vertex

x ∈ X ′i,a, d(x, Y ′) > 1
2 |Y

′| = 1
2(2k+3) = k+ 3

2 . Hence, d(x, Y ′a) ≥ k−1 (∵ d(x, Y ′a) > k+ 3
2 −3)

and the number of edges between all X ′i,a and Y ′a is at least 3k(k − 1) = 3k2 − 3k. For a

vertex y ∈ Ya, d(y,X ′i,a) = 3k − 3. The number of edges between all X ′i,a and Y ′a is less

than k(3k − 3) = 3k2 − 3k. This is a contradiction. Therefore, X ′i,a ⊂ Xi,a and there are at

least 3k vertices in X not in X ′. |X ′| ≤ 3k(6k + 6) − 3k = 18k2 + 15k, |Y ′| = 2k + 3, and

|X ′|+ |Y ′| ≤ 18k2 + 17k + 3 < 18k2 + 20k + 3. Consequently, |Y ′a| = |Y ′b | = k.

Finally, we prove the original claim. For each vertex x ∈ X ′i,a, d(x, Y ′a) ≥ k − 1 because

d(x, Y ′) > k + 3
2 , d(x, Y ′b ) = 0, and d(x, Y ′c ) = 3. Suppose that there exists a vertex x such

that d(x, Y ′a) > k − 1. The number of edges between all X ′i,a and Y ′a is greater than 3k(k − 1).

For each vertex y ∈ Y ′a, d(y,X ′i,a) = 3k − 3. The number of edges between all X ′i,a and Y ′a is

k(3k−3) = 3k(k−1). This is a contradiction, and hence d(x, Y ′a) = k−1 and d(y,X ′i,a) = 3k−3

(∀x, y ∈ X ′i,a, Y ′a). This means that the corresponding subset T ′is an exact cover of S.

9.2 Integer Linear Programming

The first IQP formulation requires quadratic constraints, which are then replaced by linear

constraints such that it can be solved by various optimization software packages [Chang et al.

(2012)]. Furthermore, the second ILP formulation is improved by using the implication rule to

simplify variables involved.

9.2.1 Quadratic programming for maximum HBCS

Let G = (X ∪ Y,E) be a bipartite graph. For each x ∈ X (y ∈ Y ), a binary variable vx

(vy) is introduced. The variable vx (vy) is 1 if and only if the vertex vx (vy) is in X ′ (Y ′). The
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integer programing is formulated as follows.

maximize
∑
x∈X

vx +
∑
y∈Y

vy

subject to 2
∑
y∈Y

exyvyvx ≥ vx(W + 1) ∀x ∈ X (9.1)

2
∑
x∈X

exyvxvy ≥ vy(W + 1) ∀y ∈ Y (9.2)

∑
x∈X

vx ≥
∑
y∈Y

vy or
∑
x∈X

vx ≤
∑
y∈Y

vy (9.3)

W =
∑
y∈Y

vy or W =
∑
x∈X

vx (9.4)

vx ∈ {0, 1} ∀x ∈ X ∪ Y

where exy =


0 xy /∈ E

1 xy ∈ E

The quadratic terms in constraints are necessary because the constraints apply only to vertices

in X ′ ∪ Y ′.

9.2.2 Linear programming for maximum HBCS

vx (vy) has two possible values such as 0 or 1. The constraint (9.1) is turned into
∑

y∈Y euvvy ≥

W + 1 in case of vx = 1 and it becomes trivial when vx = 0. Thus, the constraints (9.1) and

(9.2) are reestablished as follow.

2
∑
y∈Y

exyvy −W − 1 ≥ (|X|+ |Y |)(vx − 1) ∀x ∈ X

2
∑
x∈X

exyvx −W − 1 ≥ (|X|+ |Y |)(vy − 1) ∀y ∈ Y

In order to obtain an optimal solution, we solve the ILP problem twice by setting the constraints

(9.3) and (9.4) separately each time (i.e., W =
∑

x∈X vx if
∑

x∈X vx ≤
∑

y∈Y vy or W =∑
y∈Y vy if

∑
x∈X vx ≥

∑
y∈Y vy). In summary, this formulation uses variables and constraints

linear to the size of input vertices. i.e., O(|X|+ |Y |).
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9.3 Heuristic Algorithms

For a given bipartite graph and a subset of a vertex partition of this graph, Algorithm 8

identifies a subgraph that satisfies the following four conditions: i) the subgraph is highly bi-

connected; ii) one vertex partition of the subgraph is identical with the given subset; iii) the

number of vertices in the other vertex partition is greater than or equal to the number of vertices

in the given subset; and iv) the number of vertices in the subgraph is maximized. Let n be

the number of vertices in the given bipartite graph. The time complexity of Algorithm 8 is

O(n2). This follows directly from O(n) executions of the for-loop (Steps 1-5), where the time

complexity of executing the body of this loop is asymptotically bound by Step 2 requiring O(n)

time.

Algorithm 8 MaxVertex-HBCS(G, Y ′)

Input: A bipartite graph G = (X ∪ Y,E) and a vertex set Y ′ ⊆ Y .
Output: A maximum vertex HBCS G′ = (X ′ ∪ Y ′, E′) such that |X ′| ≥ |Y ′|.
1: for all v ∈ N(Y ′) do
2: if |N(v) ∩ Y ′| > 1

2 |Y
′| then

3: X ′ = X ′ ∪ {v}
4: end if
5: end for
6: if |X ′| ≥ |Y ′| AND G[X ′ ∪ Y ′] is HBCS then
7: return G[X ′ ∪ Y ′]
8: end if

Algorithm 9 enumerates maximum vertex HBCSs for a given bipartite graph that uses a

greedy approach to identify seed vertex sets. The while loop (Steps 3-11) identifies maximum

vertex HBCS until no more maximum vertex HBCS can be found from the seed vertices. Algo-

rithm 9 maintains the list of seed vertex sets to avoid repeating the process on the seed vertex

sets that are already examined. Let n be the number of vertices in the given bipartite. The

time complexity of Step 5 is O(n2), and this step is repeated O(n2) times through nested for

and while loop. Hence, the overall time complexity is O(n4).
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Algorithm 9 GreedyEnum-MaxVertexHBCS(G)

Input: A bipartite graph G = (X ∪ Y,E).
Output: A set of maximum vertex HBCS G′ = (X ′ ∪ Y ′, E′) such that |X ′| ≥ |Y ′|.
1: for u ∈ Y do
2: Y ′ = {u}
3: while Y ′ 6= Y AND Q does not contain Y ′ do
4: Q = Q ∪ {Y ′}
5: G′ =MaxVertex-HBCS(G, Y ′)

6: if G′ 6= NULL then
7: OUTPUT G′

8: Find a vertex v ∈ NG(X ′) \ Y ′ that maximize dG(v,X ′).
9: Y ′ = Y ′ ∪ {v}

10: end if
11: end while
12: end for

9.4 Experiments

We analyze the performance of the heuristic algorithm by comparing its results with exact

ILP solutions for small-scale instances of the HBC problem, and through an experimental study.

9.4.1 Comparative study

We compare heuristic estimates with the exact ILP results for 1, 000 random graphs as

input. The random graphs were selected with equal probability from graphs with the following:

an overall number of vertices ranging between 10 and 26 vertices and edge densities ranging

between 0.6 and 0.8. The resulting differences between exact solutions and heuristic estimates

are depicted in Fig. 9.1.

9.4.2 Empirical study

In this experimental study, we present the results of the protein function prediction by using

our heuristic algorithm. The Gene Ontology (GO) [Ashburner et al. (2000)] is currently the

dominant approach for machine-legible protein function annotations [Friedberg (2006)]. GO is

a controlled vocabulary that describes three aspects of protein functions: molecular function,

biological process, and cellular location. Each aspect is described by a directed acyclic graph

of terms and relationships that captures functional information in a standardized fashion that
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Figure 9.1: The performance of the maximum vertex heuristic algorithm is evaluated by comparing
its results with exact ILP solutions for small-scale instances.

is both computationally amenable and interpretable by humans. We use the Biological Process

classification scheme in this study. The main task of the experimental study is to predict sets

of GO terms for the target proteins with confidence scores.

Target Proteins. We obtained annotated proteins from the January versions of the 2012,

2013, 2014, 2015, and 2016 UniProt-GOA human database [Consortium et al. (2014)]. Proteins

are considered to be experimentally annotated if they are associated with GO terms having

EXP, IDA, IPI, IMP, IGI, IEP, TAS, or IC evidence codes. The set of target proteins is selected

by using the following scheme with two distinct time frames t0 and t (t0 < t)

Targets(t) = Set of proteins at least one experimental annotation exist at (t)

∩ Set of proteins only non-experimental annotation exist at (t0)

The predictive model is trained with non-experimental annotations of target proteins and

experimental annotations of non-target proteins at t0 = 2012. The performance of the model is

evaluated by comparing the predicted annotations made by us for 2012 to existing experimental

annotations in 2013-2016.

Experimental Design. Our predictive model uses the maximum vertex HBCS. For a given

set of annotations between proteins and GO terms, we create a bipartite graph that has one
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vertex partition representing the set of proteins, the other vertex partition representing the

set of GO terms, and edges representing the set of annotations. After that, Algorithm 9 finds

a list of maximum vertex HBCS from the created bipartite graph. Every pair of a protein

and a GO term in each HBCS of the found list is considered as a predictive annotation. The

confidence score of the predictive annotation, which indicates the strength of the prediction,

is the maximum sequence identity between the target protein and any neighboring non-target

proteins of the GO term in the found HBCS. Other sequence identity measures, such as 3D

sequence structure, genomic context, or interaction based, will be evaluated in future research

work.

Evaluation Metric. For a given target protein i and some decision threshold t ∈ [0, 1], the

precision and recall are calculated as

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Pi(t))
, rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Ti)

where f is a protein function in the biological process GO terms, Ti is a set of experimentally

determined GO terms for protein i, and Pi(t) is a set of predicted protein functions of i with

score greater than or equal to t. f ranges over all protein functions and I(·) stands for the

indicator function. For a fixed decision threshold t, a point in the precision-recall space is

created by averaging precision and recall across targets. Precision and recall at threshold t is

calculated as

pr(t) =
1

m(t)
·
m(t)∑
i=1

pri(t), rc(t) =
1

n
·
n∑
i=1

rci(t)

where m(t) is the number of proteins on which at least one prediction is made on threshold

t and n is the number of proteins in a target set. It should be noted that unlike [Radivojac

et al. (2013)], we did not consider the GO DAG topology, but simply ran our assessment on

GO terms as a “flat” vocabulary.

Results and Discussion. The quality of protein function prediction can be measured in

different ways that reflect differing motivations for understanding protein functions. For this

study, we show the precision-recall curves with all proteins having non-experimental annotations

2012 as the basis for predictions. We used the proteins that gained experimental annotations

in 2013-2015 to test our method. The results are shown in Fig 9.2.
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Figure 9.2: Precision-recall curves for our method. The model is trained with non-experimental anno-
tations of target proteins and experimental annotations of non-target proteins at t0 = 2012.
The performance of the model is evaluated by comparing the predicted annotations made
by us for 2012 to existing experimental annotations in 2013 ∼ 2016.

While our method has an overall low recall rate, it does have a high precision rate at low

recall values. For some niche biological applications, such a method may be useful, as biomedical

researchers may prefer generating protein function predictions with a high precision rate while

trading off recall to minimize false positives for the results they do use. To estimate performance

at different recall values, we used the Fmax(β) for the different years defined as

Fmax(β) = max
t

{
(1 + β2)

pr(t) · rc(t)
β2 · pr(t) + rc(t)

}
where values for β are 0.1, 0.2, 0.5 and 1.0. Fβ is a weighted harmonic mean of the precision

and recall. We find the maximal value for each year using different values of β as weight. The

lower β, the more weight is given to precision over recall. The results are shown in Table 9.1.

9.5 Conclusion

Our proposed HBC approach sets a way for the functional annotation of proteins based

on identifying highly bi-connected subgraphs in bipartite protein-function networks. While we

show that the HBC problem is NP-hard, and we describe an ILP formulation and an effective

heuristic. The comparative study displays accuracy of our heuristic by comparing its results
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Table 9.1: Results of Fmax(β) analysis. See text for details on how Fmax(beta) is calculated. The lower
the value of β, the more precision is weighted over recall. Our method performs best overall
with β = 0.1.

Fmax(β)
Year 0.1 0.2 0.5 1.0
2013 0.54 0.36 0.14 0.16
2014 0.71 0.47 0.17 0.14
2015 0.58 0.34 0.12 0.11
2016 0.54 0.31 0.12 0.12

with exact ILP solutions. Furthermore, the experimental study demonstrates the applicability

of the heuristic for functionally annotating proteins. Future research will investigate other max-

imization objectives for identifying highly bi-connected subgraphs and partitioning problems of

bipartite graphs based on highly bi-connected subgraphs.
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CHAPTER 10. SOFTWARE IMPLEMENTATION

The software is developed to address the median tree problem that are the Gene Duplica-

tion, Robinson-Foulds, and Deep Coalescence. The software implemented the methods in the

Chapter 4, 5, and 6.

• Software: http://genome.cs.iastate.edu/ComBio/software/genie.jar

• Operating system(s): Platform independent

• Requirements: : Java Runtime Environment version 8 or higher

The following figures are the example of gene trees and their estimated median trees in

terms of the gene duplication, the Robinson-Foulds, and the deep coalescence scores.

Figure 10.1: The gene trees of 121 Seabirds.
A: 90 Taxa, B: 16 Taxa, C: 14 Taxa, D: 20 Taxa, E: 30 Taxa, F: 17 Taxa, G: 30 Taxa.
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Figure 10.2: The synthesized species trees computed by the Strict Consensus Approach.
A: The gene duplication median tree with parsimony score 22.
B: The deep coalescence median tree with parsimony score 28.
C: The Robinson-Foulds median tree with parsimony score 58.
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CHAPTER 11. CONCLUSIONS

There is an increased interest in making NP-hard median tree problems available for large-

scale species tree construction. We showed that the gene duplication satisfies the weak Pareto for

clusters, which allows us to design an efficient parameterized algorithm for the gene duplication

problem for input trees with the same taxon set. The parameter is the maximum degree of the

strict consensus tree of the input trees.

While it has been demonstrated that the parametrized algorithm can successfully synthesize

large-scale species trees, it is only able to handle restricted median tree problems (i.e., rooted

binary gene trees sampled from identical species), which have largely limited applicability in

practice. We introduced two novel methods that overcome these limitations by adopting the

parameterized algorithm to handle unrestricted median tree problems (i.e., unrooted binary

gene trees sampled from different species).

We introduced a graph-theoretic formulation of the Robinson-Foulds (RF) median tree prob-

lem where optimal trees relate to minimum node weight cliques in a compatibility graph. The

clique-based heuristic searches for optimal cliques in this graph, in contrast to standard local

search heuristics that search the space of all candidate median trees. Investigating how the

clique-based heuristic and standard local search heuristics may relate, we found that the clique-

based heuristic can be equivalently expressed as a standard local search heuristic albeit using a

distinct tree edit operation. This result shows that the clique-based heuristic has the ability to

improve on RF median tree estimated of standard local searches.

While the RF distance measure has been used widely to compare phylogenetics trees in

computational biology, the distance is poorly distributed, shows insufficient discrimination, and

is too sensitive to tree edit operations. To overcome these shortcomings, we introduced a new

tree distance measure which is a metric on the space of rooted trees. The distance can be
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computed in polynomial time in contrast to edit distances under tree edit operations.

Finally, we proved that the Highly Bi-Connected Subgraph (HBCS) problem is NP-hard,

and we describe an ILP formulation and an effective heuristic. The comparative study displays

accuracy of our heuristic by comparing its results with exact ILP solutions.
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